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The basic method of UPEN (uniform penalty inversion of mul-
tiexponential decay data) is given in an earlier publication (Borgia
et al., J. Magn. Reson. 132, 65–77 (1998)), which also discusses the
ffects of noise, constraints, and smoothing on the resolution or
pparent resolution of features of a computed distribution of
elaxation times. UPEN applies negative feedback to a regulariza-
ion penalty, allowing stronger smoothing for a broad feature than
or a sharp line. This avoids unnecessarily broadening the sharp
ine and/or breaking the wide peak or tail into several peaks that
he relaxation data do not demand to be separate. The experimen-
al and artificial data presented earlier were T1 data, and all had

fixed data spacings, uniform in log-time. However, for T2 data,
usually spaced uniformly in linear time, or for data spaced in any
manner, we have found that the data spacing does not enter
explicitly into the computation. The present work shows the ex-
tension of UPEN to T2 data, including the averaging of data in

indows and the use of the corresponding weighting factors in the
omputation. Measures are implemented to control portions of
omputed distributions extending beyond the data range. The
nput smoothing parameters in UPEN are normally fixed, rather
han data dependent. A major problem arises, especially at high
ignal-to-noise ratios, when UPEN is applied to data sets with
ystematic errors due to instrumental nonidealities or adjustment
roblems. For instance, a relaxation curve for a wide line can be
arrowed by an artificial downward bending of the relaxation
urve. Diagnostic parameters are generated to help identify data
roblems, and the diagnostics are applied in several examples,
ith particular attention to the meaningful resolution of two

losely spaced peaks in a distribution of relaxation times. Where
easible, processing with UPEN in nearly real time should help
dentify data problems while further instrument adjustments can
till be made. The need for the nonnegative constraint is greatly
educed in UPEN, and preliminary processing without this con-
traint helps identify data sets for which application of the non-
egative constraint is too expensive in terms of error of fit for the
ata set to represent sums of decaying positive exponentials plus
andom noise. © 2000 Academic Press

Key Words: relaxation times; inversion; regularization; multiex-
ponential; nuclear magnetic resonance.

1 To whom correspondence should be addressed. E-mail: rjsbm
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INTRODUCTION

The basic method of UPEN (uniform penalty inversion
multiexponential decay data) is given in an earlier publica
(1), which also discusses the effects of noise, constraints
smoothing on the resolution or apparent resolution of fea
of a computed distribution of relaxation times. Numer
examples of artificial and laboratory relaxation data have
inverted by UPEN (1, 2) and compared with inversion emplo
ing a fixed regularizing parameter, illustrating the ability
UPEN to show, for instance, a sharp peak with a long low

The examples discussed in Ref. (1) were ofT1 data with a
uniform data density in log-time, and the present work ext
the use of UPEN toT2 data equally spaced in linear time a
to multiexponential decay data spaced in any manner. P
sions are made for any necessary weighting of the input
points, including where data points are averaged in window
order to have a manageable number of input points for
putation.

The sections Inversion with Variable Smoothing and F
back for Uniform Penalty are complete, extended, and upd
versions of the corresponding sections in Ref. (1), with the
present Eqs. [2–9] corresponding to Eqs. [2–9] of Ref. (1). This
is to introduce and implement the windowing and weigh
needed for mostT2 data and to remove the essentially unu
surmise in (1) that, if data density is variable, it should en
explicitly in the UPEN computation as a factor in the smo
ing penalty. Of course, denser data can force sharper de

Some of the symbols used in more than one section are
in the Appendix.

AVERAGING OF ECHOES IN WINDOWS

T2 data are usually taken using some variant on CPMG
Carr–Purcell–Meiboom–Gill method, with equal spacing
linear time. However, as many as 105 echoes have been tak
and it is usual to take hundreds or thousands of echoes.
systematic data errors are smoothly varying with data time
if the noise is additive, random, and normally distributed (o
@
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274 BORGIA, BROWN, AND FANTAZZINI
least from a compact distribution), the averaging of data p
into sufficiently narrow windows does not change the re
with respect to that obtained by using all of the points with
windowing (when this is computationally possible). The c
mon practice of simply discarding most of the points at l
times is simply a waste of good information, leading t
decreased effective signal-to-noise ratio (SNR). Numbe
points for computation can be, in some cases, reduce
orders of magnitude. A window with a full widthD 5 0.05
imes its center time is narrow enough for almost all real
hat we have. The first approximately 2/D points should be le
nwindowed. These parameters are conservative, as f
earch use. In most applications windowing can be mor
ere, giving yet fewer points for computation.
If most of the original data points are subject to rand

oise of a given rms value, but if there are a few outliers
o noise bursts, periodic spikes, etc.), then the editing o
ata set should be done before windowing, and the wind
hould not span gaps in the data.
If the j th echo has amplitudesej at echo timet ej, the i th

window hasBi echoes in it with average signalsi and averag
time t i , j i 5 t i /TEE (integer or half-integer) is the index of t

indow center, andTEE is the spacing of the echoes emplo
(whether even echoes or all echoes), we havesi 5 1/Bi

¥ j i 2(Bi 21)/ 2
j i 1(Bi 21)/ 2 sej and t i 5 1/Bi ¥ j i 2(Bi 21)/ 2

j i 1(Bi 21)/ 2 t ej. Although the sum
can be evaluated exactly for an exponential signal, an int
approximation is adequate for our purposes. The noise
part of the signalsi is overestimated in the above average
the approximate factor

1

TEEBi
E

2TEEBi/ 2

TEEBi/ 2

e2t /Tdt 5
sinh@~TEEBi/~2T!#

@TEEBi/~2T!#

< 1 1
1

6 STEEBi

2T D 2

, [1]

hereT is relaxation time. IfD is the relative window widt
width in time divided by center time),Bi 5 Dt i /TEE. For the

relaxation timeT the error term in Eq. [1] gives the absol
rror (1/6)[Dt i /(2T)] 2exp(2t i /T). The maximum value of a

expression of the formx2e2x is 4/e2 ' 0.54.Thus, relative to
the initial signal, the error from averaging in windows is l
than0.0225D 2.

INVERSION WITH VARIABLE SMOOTHING

Inversion with Fixed Smoothing and without Weighting
Factors

We wish to approximate a set of relaxation datasi , taken a
times t i equally spaced inqi 5 ln t i , by a sum ofM expo-

ential components,si ' g0 1 ¥ gkexp(2t i /Tk), whereTk are
he relaxation times equally spaced inQk 5 ln Tk and covering
ts
lt
t
-
g
a
of
by

ta

re-
e-

e
e
s
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ee
y
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about the same range ast i . The distribution of amplitudes
relaxation timesTk (on the logarithmic time scale) isgk, and
g0 5 S`, the value of the signal at infinite time, may or m
not be also a regression parameter. To avoid excessive d
penalty function is added to the squared error of fit, and
sum is minimized. Common penalty functions are square
amplitude, slope (first difference), or curvature (second di
ence). The function to be minimized is then of the form

O
i51

N

~ g0 1 O
k51

M

gkexp~2t i/Tk! 2 si!
2 1 A O

k51

M

gk
2

1 D O
k51

M21

~ gk11 2 gk!
2 1 C O

k52

M21

~ gk21 2 2gk 1 gk11!
2,

[2]

whereA is the coefficient for amplitude smoothing,D (differ-
nce) for slope smoothing, andC (curvature) for curvatur

smoothing. We do not include theg0 term in the penalt
function. Usually only one of the three kinds of smoothin
used.

Inversion with Weighting Factors and Variable Smoothing

To introduce more equitable smoothing for sharp and b
features, we makeA, D, andC in Eq. [2] variable, with subscrip
k, and move them inside the summations. Although var
smoothing can be implemented for amplitude, slope, or curv
smoothing, we will discuss only curvature smoothing (but
feedback from both curvature and slope), which we have use
a number of years. However, outside the range of relaxation
covered by the data, we are now applying additionally an a
tude penalty, with amplitude feedback only.

The averaging of points in windows requires the introd
tion of the weighting factorsBi into the generalization of E
[2]. We apply a curvature penalty, with both curvature
slope feedback, just as in Ref. (1), although the compliance (
feedback) parametersa of Ref. (1) have been changed tob’s,
because the change in the assumption about the appeara
data point spacing in Eq. [9] of Ref. (1) inserts a factor of 0.0
the spacing used in all examples in Ref. (1), multiplying the
former a’s. The amplitude penalty now applied outside
data range adds theA-term of Eqs. [2–3]. The quantity to
minimized is now

O
i51

N

Bi~ g0 1 O
k51

M

gkexp~2t i/Tk! 2 si!
2 1 O

k51

M

Akgk
2

1 O
k52

M21

Ck~ gk21 2 2gk 1 gk11!
2, [3]
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275INVERSION OF MULTIEXPONENTIAL DECAY DATA
whereCk will be iteratively adjusted in regions of substan
urvature to be roughly reciprocal to the local curva
quared (which itself depends on theCk). The Ak’s are zero

within the range of relaxation times covered by the data. W
good SNR some extrapolation of relaxation time compon
outside the data range is permitted. Theg0 term is used only
the asymptotic value at infinite time is a regression param

We now use matrix notation for Eq. [3]. There areN data
times (spaced in any manner but without big gaps),
weighting factorsBi , which are represented by theN 3 N
diagonal matrixB. There areM 1 MN computed componen
whereMN 5 1 if the signal value at infinite time is a regress
parameter, andMN 5 0 otherwise. The coefficientsAk are
represented by the diagonal matrixA, with nonzero compo
nents only for relaxation times outside the range of ti
covered by the data.

If the componentsgk, si , and xi make up the vectorsg
(computed distribution,M 1 MN components),s (measure
noisy signal,N components), andx (computed fit to the signa

components), and if the components exp(2t i /Tk) make up
the N 3 (M 1 MN) matrix U, we havex 5 Ug.

The first term in Eq. [3] is theng†U†BUg 2 2s†BUg 1 s†Bs,
with the last of these a constant. We letU†BU 5 W. This
M 1 MN) 3 (M 1 MN) matrix need be computed only on

for the iterative computation ofg unless changes are made
or in s and t.
For the curvature penalty term in Eq. [3] we first find

ontribution for unitCk for a singlek-value. This involvesgk21, gk,
andgk11. The curvature (second difference) at thekth computed
point is V (k)g, whereV (k) is an (M 1 MN) 3 (M 1 MN) matrix
containing all zero elements except for the submatrix

S0 0 0
1 22 1
0 0 0

D [4]

centered at thekth diagonal point. The contribution to the cur
ture squared isg†V (k)†V (k)g, where V (k)†V (k) is a symmetrica
matrix containing all zero elements except for the submatrix

S 1 22 1
22 4 22

1 22 1
D , [5]

centered at thekth diagonal element. We now form the ma
K (Krümmung:curvature) by multiplying each matrixV (k) †V (k)

by its curvature smoothing coefficientCk and summing th
atrices for allk-values from 21 MN to M 1 MN 2 1. The

oefficientsAk for the amplitude penalty are simply added
the corresponding diagonal element ofK . The total penalty i
g†Kg. Equation [3], and the quantity to be minimized, is n

iven by
l
e

h
ts

er.

h

s

g†Wg 2 2s†BUg 1 s†Bs 1 g†Kg . [6]

We let s†BU 5 Y and minimize the above expression
setting the gradient with respect tog to zero, giving

Wg 1 Kg 5 Y ; g 5 ~W 1 K ! 21Y . [7]

FEEDBACK FOR UNIFORM PENALTY

Weighting Factors and Scaling of Signal and Noise

In Eq. [3] the weighting factorBi for the windowed signalsi

at time t i is normally equal to the number of data po
averaged in the window forsi . However, the inherent weight
a point, windowed or not, is inversely proportional to
square of the point’s level of random noise, the noise of w
is in turn proportional to the noise of the individual data po
divided by the square root of the number of points averag
the window. If different individual points have different inh
ent noise levels, this can be accounted for by differenBi

values. If the individual data points have noise rando
selected from a Gaussian distribution of half-widthR, we can

ither divide theBi ’s by R2 or else multiply the other terms
Eq. [3] byR2. If we include the factor 1/R2 in Bi , we note tha
the first of the three terms in Eq. [3] becomes scale-inde
dent. That is, the term is not changed by multiplying the in
noisy signal by some scale factor. Theg’s are multiplied by th
same factor when the data are fit, if the fit is not changed
than by scale. The noise-free signal, the noise, and the
function all become scaled by the same factor.

Of course, theg’s in the other two terms of Eq. [3] appe
quadratically, so these terms are proportional to the squa
the scaling factor if theC’s and theA’s are left unchange
Thus, theC’s andA’s are invariant with respect to scaling
the data.

In the present version of UPEN the noiseR is estimated i
each iteration (rather than input from separate computatio
in Ref. (1)) and may change significantly in the first f
iterations. If the weighting factors do not change with res
to each other, it is not necessary to recompute the matriW,
merely to change a constant factor. Therefore, Eq. [3
multiplied by the factorR2, so thatR2 appears as a factor in t
equations forCk andAk.

Feedback

To have a strictly uniform penalty, that is, the same co
bution to the right side of Eq. [3] for each value ofk, we would
have to find a way to makeCk inversely proportional to th
square of the second difference. However, when the curv
is zero or negligible, it is not possible or not meaningfu
makeCk large enough to maintain a truly uniform penalty
such points. We can obtain a penalty which is the sam
points of significant curvature by a series of iterations, sta
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276 BORGIA, BROWN, AND FANTAZZINI
with a fixed Ck and for each new iteration lettingCk be
nversely proportional to the square of the second differ
rom the previous iteration. This does give adequate fi
elaxation data and gives a penalty that is either zer
egligible or else a fixed value; however, this gives uns

actory distributions consisting of straight-line segments.
an be improved considerably by relaxing the uniform pen
equirement somewhat and using at eachk the highest of th
econd-difference-squared values found atk 2 1, k, or k 1 1
rom the previous iteration. That is,Ck for the next iteration i
inversely proportional to the largest second-difference-squ
found at k or a nearest neighbor. We can further impr
appearance in many cases by using also second-nearest
bors or points from an even wider window. However, a w
window interferes with implementing abrupt changes
smoothing coefficient. It is also possible to use only slo
squared feedback (instead of curvature feedback) for curv
smoothing. In this case it is necessary to use the hig
slope-squared over a window extending about 0.3 Np in r
ation time both above and below the pointk. A useful com
promise was found to be the use of both curvature and
feedback and for eachk to use the highest curvature valu
ound at the point or a nearest neighbor.

The smoothing coefficientsCk are coefficients of rigidity fo
the computed distributions. Therefore, the feedback to a
the Ck to give roughly uniform penalty consists of localcom-

liance contributions from both slope and curvature. To
lement this we use a slope compliance parameterbp (pen-
enza: slope) and a curvature compliance parameterbc to

define the compliance

ck 5 bpDQ
2 ~ gk11 2 gk21!

2

1 bcmax@~ gj21 2 2gj 1 gj11!
2# j5k21,k,k11, [8]

where theb’s are constants that are not changed from
teration to the next nor from one data set to the next.
actor of DQ

2 is to preserve the ratio of approximate first
second derivatives when the spacingDQ in Nepers of compute
points is changed.

Balance between Smoothing and Noise

The residuals term (left) and the penalty terms (right) of
[3] should somehow be balanced in finding the quantity t
minimized to get the distributiongk. In the vicinity of a good
solution to good data the residuals term from the minimiza
of Eq. [3] is primarily due to the random noise. IfR is the rms
noise, the penalty terms in Eq. [3] should be proportional tR2

to preserve appropriate scaling when the input noisy sign
merely multiplied by a factor. We therefore multiply the p
alty terms byR2, as mentioned above, although we co
alternatively include a factor 1/R2 with the weighting factor
B. For the ensemble rms noiseR we use a combination of th
e
to
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noise estimates defined later in Eqs. [13–14]. Note that
paragraph and Eq. [9] have a substantive change from tho
Ref. (1), in addition to extensions of the method. Removin
factor of the data spacing replaces a factor ofDq in Eq. [9] with
0.08, the value it had in all examples in Ref. (1). Another
hange is in defining slope between pointsk 1 1 andk 2 1
ithout involving pointk, resulting in a 43 reduction inbd.

This is to avoid a large slope contribution from a single-p
peak.

To approximate an integral of the form* C(Q)(d2g/
dQ2) 2dQ for the curvature penalty by a discrete sum,
include the step sizeDQ as a factor in the coefficientCk. We

ow have

Ck 5 R2DQ/~b0 1 ck!. [9]

he Ck’s from one iteration are used to give theCk’s for the
ext. The termb0 is a compliance floor, which should be sm

enough that it would never lead to undersmoothing, but w
should be large enough to be a “seed” for the developme
curvature in the iteration process. For use with either lo
high SNR datab0 is now made very small (1026 rather than

quivalent to 80, as in Ref. (1), where low SNR data were n
presented). It is not critical, but it cannot be zero.

The Ak term of Eq. [3] is the amplitude penalty applied
relaxation times outside the data range and is implement
simply addingAk to the kth diagonal element ofK (see Eq
[6]), with Ak 5 0 within the range of relaxation times cove
by the data and

Ak 5 R2DQ/~b0 1 bagk
2! [10]

outside the data range, without contributions from neighbo
points. The compliance parameter for amplitude feedbac
the amplitude penalty isba (a for amplitude). The curvatu
penalties are applied to the entire range of relaxation time
the computed distribution, including those outside the ran
data times. The relaxation times for computed points are
ally extended a factor of 5 above and below the range o
data, with distribution values and slopes being zeroed at
end. That is, the first two and last two points are forced to z
although, in the actual computation, these are virtual point
do not extend the range of the parameter space.

The current “default” values of theb’s areb0 5 1026, ba 5
0.5,bp 5 0.6, andbc 5 0.3. In addition, the program usesb00,
normally 1.0, which can be used to multiply all theb’s to

niformly increase or decrease smoothing.
The wide possible range of the smoothing coefficientCk is

shown in Fig. 1, which is for a set of artificial data contrived
illustrate the uniform penalty feature of UPEN. The mo
consists of random noise of unit rms value and zero me
sharp line with amplitude 1000 at 2500 ms, a Gaussian lin
amplitude 1000 and half-width 0.15 Np at 800 ms, a h
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277INVERSION OF MULTIEXPONENTIAL DECAY DATA
Gaussian extending downward from 800 ms with ampli
1000 and half-width 2.5 Np, and a Gaussian line of ampli
200 and half-width 0.3 Np at 20 ms. The UPEN solut
shown by the plotted points, is substantially identical to
above model, shown by the solid curve in the upper plot

In the lower part of Fig. 1, the heavy solid line shows
smoothing coefficientCk, with a value 1027 under the shar
peak at 2500 ms and a value of about 100 at the foot of the
wide Gaussian near 1 ms, giving a range of a factor of 109. This
range does not include the regions of insignificant curva
shown in the figure, such as the value 109 for the short sectio
of NN-enforced baseline between the two main peaks.

The heavy dashed line shows the penalty, which is rou
uniform only in the regions of significant curvature penalty,
including inflection points and sections of baseline (includ
those determined by NN). The solid horizontal line at20.5 is
drawn for reference for the highest penalty regions. The
alty near 1 ms at the foot of the very wide half-Gaus
centered at 800 ms is about the same as the penalty at th
sharp peak.

Figure 1 also illustrates the ability of UPEN to show pe
at various widths without broadening the narrow ones or s
ting the wide ones. Processing the data of Fig. 1 wi
compromise fixed smoothing factor just small enough to

FIG. 1. The lower figure shows the smoothing coefficientCk (heavy solid
urve) and penaltyCk( gk21 2 2gk 1 gk11)

2 (heavy dashed curve) for a set
artificial data with added random noise (parameters in text). The solid cu
the upper figure shows the model distribution of relaxation times, an
plotted points aregk, the UPEN solution, with part of the curve shown a

03. The solid horizontal line at20.5 in the lower figure shows the unifo
enalty value of the curvature penalty at most regions of significant curv
ither large or small. Under the very sharp peak ingk at 2500 msC ' 1027,

whereasC ' 100 from 0.5 to 5 ms, giving a range of 109 for the smoothin
coefficient, not counting extremes at regions of transition or baseline.
e
e
,
e

ry

re

ly
t
g

n-
n
ery

s
t-
a
-

solve the two sharpest peaks almost to baseline, still gr
widening them, breaks the remaining part of the distribu
into three peaks, almost to baseline. The peaks (not show
at 1.6, 22, 157, 680, and 2360 ms and do not represen
model well. The solution with the fixed smoothing coeffici
would be strongly rejected by the diagnostic parameters
given in a later section. Further examples are given in R
(1, 2).

bsolute-Value Data

Most of the relaxation data processed by UPEN have
hased data, hopefully the sum of positive exponentials
dded zero-mean random noise. However, data are som

aken as absolute-value dataSa 5 =Sp
2 1 Sq

2, whereSp andSq

are the in-phase and quadrature signals (or signals a
whatever the phases). The noise, of course, no longer ave
to zero. If R is the rms single channel noise, the noise-
signal isS, and if x and y are samples of Gaussian rand
noise with unit rms value and zero mean, then the ense
average ofSa is given by averaging over the possible no
values:

^Sa&/R 5
1

p E
x52`

` E
y50

`

Î~S/R 1 x! 2 1 y2

3 expF2
1

2
~ x2 1 y2!Gdxdy. [11]

This can be expressed in terms of modified Bessel func
(3), but it is easy to compute a table of values by di
integration. The right-hand side of Eq. [11] equalsS/R for
largeSand=p/2 for S3 0. If Eq. [11] is used as a transfo
or individual data points, the estimatedS-values have a bia
owever, this effect is usually reduced somewhat by the

hat T2 data at low signal values are usually at times l
enough so that the processed data points represent wind
which many individual points are averaged. Reference (4) and
references therein discuss statistical treatments of abs
value data.

To apply transforms related to Eq. [11] one must d
separately with baseline problems if they exist. Detection
cuits may have nonzero baselines, and older instruments
simple diode detection may have nonzero baselines rela
a forward voltage drop in detection. Most modern relaxa
data are taken with phase cycling schemes to give bas
close to zero, and, ifS` is a regression parameter, substan
values ofS`/Rv for T2 data may indicate data problems. He
Rv is a noise estimate derived from the data and defined
in Eq. [14]. In particular, ifS`/Rv is comparable to=p/2 one
may suspect absolute-value recording of data. We hav
ceived numerous sets of data that are apparently absolute
data but not identified as such.
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278 BORGIA, BROWN, AND FANTAZZINI
At present we use a “quick and dirty” transform for absol
value data rather than more elaborate statistical proced
which do not appear justified in many applications, espec
if the absolute-value recording is done because of phase
lems or other data problems. We process the signalSb given by
the transform

Sp < Sb 5 sgn~Sa 2 Sc!ÎuSa
2 2 Sc

2u,

Sc 5 Ra
2@1 1 ~6.4Sd/~16 1 Sd

4! 1 .5!/Sd
2#,

Sd 5 Sa/Ra, Ra 5 S̀ /Îp/ 2 or Rv. [12]

In the expression forSc the terms 11 0.5/Sd
2 are from the

expansion for largeSa/Ra, and the remaining part comes fro
a rough fit to (̂Sa&/R) 2 2 (S/R) 2 2 1 2 1/[2(^Sa&/R) 2] from
Eq. [11].Ra is an estimate ofR, the ensemble-average sing
channel noise, and it is taken fromS` if available and othe-
wise fromRv (See later, Eq. [14]). In either case, any nonz
baseline must be known.Sa should not be much smaller thanSc

and certainly not negative.
With absolute-value data it is necessary to limit the com

tation of the estimated noise to the data interval with sub
tial signal, because the noise statistics are completely diff
for low SNR. No attempt was made to correct the statis
treatment of the low SNR region in the regression computa

PROBLEMS OF INVERTING “REAL” DATA

Effective Noise and Systematic Data Errors

Whatever the time sequence of the data points, eq
spaced in time, log-time, or other, the denser the data
more information is available or the lower the effect
noise level. We therefore define an effective noise l
Re 5 R/=(data points per Neper), where the noise level
the individual data points isR. By this definition,Re is not
affected by the windowing or nonwindowing of the dat

T1 data are often taken at equal intervals in log-time, gi
constant density of data points and a constantRe over the

interval covered by the data. However,T2 data are often take
by sequences that give data equally spaced in linear time
point density in points per Neper isd(t/TEE)/d(ln t) 5 t/TEE.
We then haveRe 5 R/=t/TEE; that is, the effective signal-t
noise ratio is proportional to the square root of data time

If the data are ideal in the sense that they consist of ran
noise plus the “true” decay signal, free of any systematic e
or instrumental distortions, then much more detail is avail
from T2 data at long times than at short times. For instanc
we have a data point spacingTEE 5 0.1 ms and have on
eature with a relaxation time of 0.5 ms and another at 5 s
atio of times is 10,000, and the ratio of effective noise va
s 0.01 5 1/=10,000. If the individual-point signal-to-nois
ratio is SNR5 500, as is often found in laboratory measu
-
es,
ly
b-

o

-
n-
nt

al
n.

lly
he
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g
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m
rs
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if

e
s

-

ments, for 5 s wehave SNR-effective5 500 3 =50,0005
1.1 3 105.

It is probably not possible to have sources of system
error all smaller than 1025 times the initial signal. Man
factors, including constancy and accuracy of the various p
sequences, amplifier linearity, baseline drift, and elect
interference, can lead to errors larger than the effective
level. Even less drastic examples can give effective noise l
than plausible instrumental accuracy.

The very fact that a smoothing or “regularization” coe
cient does not need to be a compromise between that n
for a sharp feature and that needed for a broad feature ca
UPEN to give spuriously sharp features on a distributio
relaxation times in response to systematic distortions o
data. A slight downward bending of the decay curve
artificially sharpen a line or even split a peak. A baseline
can lead to artificially sharp peaks at long relaxation time

UPEN and Diagnostics

The fact that UPEN can appropriately smooth a broad c
ponent of a distribution such as a long tail on a peak but
not oversmooth a sharp peak allows UPEN to give an ade
fit to “legitimate” data, namely, data corresponding to the
of positive exponential components with relaxation tim
within the range covered by the data. Extensive testin
UPEN with artificial data yields adequate fits to all data ex
in a few cases, to be discussed later, of unresolved lines
SNR for the feature in the range for marginal resolution
criteria given in Ref. (1).

rms error of fit. If UPEN does not give an adequate fit
a set of data, it appears that some problem with the data e
Of course, it is necessary to know the random noise lev
know what fit is adequate. For many data regimes this sh
be known to within about a percent for diagnostic purpose
is often difficult to know the noise this well from “blan
measurements, such as that without sample or without c
pulses. UPEN now generates several different noise param
from the data. The parameterR, without subscript, is th
assumed statistical random noise level of the individual
points, with any variability and effects of averaging in w
dows being indicated by the weighting factorsBi . If the resid-
uals Ei are the errors of fit to the final (possibly window
data points, and the weighting factors mentioned above aBi ,
and there areN (possibly windowed) points used in the co
putation, we defineRr as the residual error parameter,

Rr
2 5 O

i51

N

BiE i
2/N. [13]

This weighting is used to give equal importance to the noi
long and short data times when relaxation times cover
ranges of times (not to give the best statistical estimate oR).
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279INVERSION OF MULTIEXPONENTIAL DECAY DATA
The factor of=Bi for each factor ofEi is to offset the nois
reduction by the averaging in windows or other known inhe
differences in noise level. The kurtosis of the distribution
=BiEi is computed to warn of wild points or major d
excursions.

Random noise. Rr can, of course, be larger than the ac
random noiseR if the fit is not good for any reason. If there a

nough data points, one can get a better estimateRv (v for
ariation ofEi) of the random noiseR by comparing the erro
f fit of second-nearest neighbors,

Rv
2 5

1

2~N 2 2! O
i51

N22

~ÎBiEi 2 ÎBi12Ei12!
2. [14]

The intent is thatRv should not be greatly affected by slow
varying nonrandom errors of fit, thereby giving a better e
mate of the random error. A useful parameter to indi
significant nonrandom errors of fit isRrv 5 ln(Rr/Rv). This
parameter should normally be negative, since the fitting
cedure minimizes the errors of fit themselves (together
smoothing penalty) rather than differences of fit among ne
bors.

Early signal alternation. The reasonsecond-nearest neigh
ors were used is that a common data problem is an altern
f early data points about any plausible fit. The use of ne
eighbors would give an artificially largeRv with early poin

alternation. However, it is useful to have separately an in
tion of the early alternation problem. We define

R2
2 5

1

2Na
O
i51

Na

~ÎBiEi 2 ÎBi12Ei12!
2, [15]

R1
2 5

1

2Na
O
i51

Na

~ÎBiEi 2 ÎBi11Ei11!
2, [16]

whereNa 5 16 at present. We now setR12 5 ln(R1/R2). A
arge value indicates the early alternation problem.

Negative excursions without NN.As discussed in Ref. (1),
he variable smoothing feature of UPEN leads to a gre
educed dependence on NN, the nonnegative constraint.
ata sets that do not lead to sharp lines do not need NN
t present, UPEN executes a number of iterations wit
pplication of NN and computes the fraction of the distribu

hat is negative. Although without NN, sharp peaks can
ubstantial overshoot and undershoot, an excessive ne
xcursion indicates a probable data problem.

Cost of NN. Also another important diagnostic parame
s derived from the series of iterations without NN, and th
he cost of NN in terms of quality of fit. The “new”Rr (with
NN) is compared to the “old”Rr (without NN) by the param-
eterRrno 5 ln[Rr(new)/Rr(old)].
t
f
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Baseline. T2 data are usually recorded with phase cyc
sequences that should produce a baseline at zero amp
UPEN can be run with or withoutS`, the signal at infinite time
as a regression parameter. IfS` is a regression parameter
large S`/Rv may indicate data problems for phase-cycledT2

data.
The UPEN output to a spreadsheet for plotting gives als

individual errors of fit. Viewing these can often help in id
tifying data problems, such as early signal alternation, bas
problems, oscillations at a particular frequency, or error ex
sions at a particular time.

Warnings and Countermeasures for Systematic Errors

UPEN posts warnings when various parameters are in ra
to suggest possible data problems or reasons to give s
attention to a data set. In addition, some countermeasur
available as options to be applied either automatically or m
ually.

Signal alternation and data midpoints.If R12 is excessive
the firstNa signal values are replaced by the firstNa midpoints
hat is, the first points1 is replaced by1

2 (s1 1 s2), with
corresponding time midpoints, etc. Under some circumsta
(5) there is some degree of validity to the use of midpoint
any case there is less tendency for the early alternatio
distort the statistical parameters for the whole distribu
When this alternation occurs, components at very short t
are subject to doubt, whatever is done in the computatio
there is reason to give more credence to certain points, su
the even points, then it is clear that the midpoints may b
error; however, if this is the case, the data points shou
edited accordingly. When there are no large very short c
ponents, the use of the early midpoints does not appear to
much effect on the computed distributions. However, s
diagnostic parameters asRrv are much more usable, and of
some obvious artifacts are eliminated at times even beyon
first Na points. In some cases the use of the midpoints av
wild positive or negative peaks at short times.

Clipping weighting factors on approach to baseline.Some
common problems withT2 data appear to involve the approa
to baseline. The effective random noise levelRe continues to
decrease at long times, and the possibility increases tha
tematic errors from drift may become larger thanRe. Some o
these problems appear to be significantly reduced if the we
ing factorsBi are clipped at the level at the longest relaxa
time with significant amplitude for the distribution. Befo
application of NN the distribution may end with a nega
peak, which may be legitimate if the distribution ends sha
leading to undershoot; however, some distributions appe
end in negative peaks because of data problems at the
times. With NN, a sharp final spike, possibly even separ
from the rest of the distribution, may result.

The above clipping of weighting factors reduces the ab
to resolve a pair of lines at the longest relaxation times a
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280 BORGIA, BROWN, AND FANTAZZINI
as much as reduction of the overall compliance factorb00 by a
factor of 2 or a decrease of the signal by a factor of=2.

Clipping weighting factors for high effective SNR.Many
of the problems of systematic errors are less severe with
than with high SNR. In fact, UPEN may not function w
some noiseless artificial data unless a lower limit to the c
puted noise is imposed. For specific data-taking conditio
may be appropriate to limits1=Bi /Rv, wheres1 is the initial
(maximum) signal, to some maximum effective SNR.

Clipping compliances for narrow lines.It is possible to
employ the negative feedback for the smoothing coefficie
UPEN for all but the narrowest lines. This is accomplishe
clipping the computed compliances at a value correspond
a peak of a given minimum width, thereby preventing ex
sively sharp peaks or split peaks, without oversmoot
broader features. Again, this may interfere with legitim
sharp or resolved lines from ideal data with random nois

Excessive Rrv and/or Rrno. An excessiveRrv or Rrno indi-
cates a bad fit to the data and probably indicates a problem
the data. One then has the opportunity to assess the pro
and make decisions. For instance, plotting the errors of fit
show that the first point is bad or that a point at a very long
has been subject to drift.

Marginal resolution. Special attention is required for t
case whereRrno has a moderate positive value andRrv is
comparable, here indicating a reasonable fit obtained wi
NN, but with a substantial cost of NN. This usually indica
data problems, but the special case of unresolved, but m
ally resolvable, peaks is a possibility. If the peaks are not
close to being resolved, or if they are resolved, the cost o
is usually not great. The marginal case may be tested som
by increasingb00 by a factor of 2 or 3 to decrease the smo-
ng to see if this causes resolution of some features. If it
nd if Rr (and, usually,Rrv andRrno) is, by the criteria in Re

(1), very substantially decreased, then the resolution o
features may be meaningful. Note that an increase inb00 that
permits an additional cycle of oscillation in a distribut
allows additional accommodation of the noise (1).

Sharpness of detail and multimodality.A parameterF sd

indicating sharp detail is defined

Fsd 5 ~ O
k51

M21

~ gk11 2 gk!
2/ O

k51

M21

gk
2! 1/ 2/DQ, [17]

hereDQ is the spacing of the computed points in Nepers,
M is the number of computed points, the first and last pai
which are normally zero. In the limit of smallDQ, F sd

2 is the
ratio of integrals of the distribution slope squared and
amplitude squared. For many sequences of data sets a g
range ofF sd may be found. A sequence of samples may h
no very sharp peaks, often leading toF sd values of the order o
w
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1.0 or some particular range. A drastically differentF sd, espe-
cially a much larger one, may indicate a data problem.

A related parameter is an indicator of a multimodal chara
of a distribution,

Fmm 5 O
k51

M21

ugk11 2 gku/~2gmax!, [18]

where gmax is peak height. If the distribution is unimod
Fmm 5 1; if there are two equal and separated peaks,Fmm 5 2.
Thus, in some sense,Fmm is an index of multimodality.

ExcessiveuS̀ u with T2 data. We normally useS` as a
regression parameter forT1 data, becauseS` is seldom know
to an accuracy commensurate with the effective SNR.T2 data
may or may not be taken with baseline controlled to
degree. IfS` is made a regression parameter, it is a us
diagnostic parameter under circumstances whereS` should be
very small compared toRv. Of course, if baseline isreliably
known to be very small, then the information should no
wasted by includingS` as a regression parameter; ifS` is not
accurately determined by numerous baseline points, it h
smoothing effect that can in critical cases make the differ
between resolution and nonresolution of a pair of peaks. O
other hand, a wrong assumption of zero baseline, wh
should be slightly negative, can lead to a false apparent
lution of peaks that would not be shown as resolved whe
correct baseline is used.

As has been mentioned,S` values of the order ofRv=p/2
may indicate data recorded as absolute values.

EXAMPLES AND USE OF DIAGNOSTICS

Sets of relaxation data have been solicited from a numb
sources, most of which will not be identified. All are fro
substantial sequences of samples for which most relax
measurements are good according to the above criteria
examples are shown to illustrate the use of the diagn
features discussed above.

Distorted Relaxation Curve

Figure 2 shows several relaxation time distributions foT2

(CPMG) data for a sample of sandstone cleaned and sat
with brine. Data were taken at two even-echo spacingsTEE

about a factor of 3 apart. The data were windowed as desc
above; the weighting-factor clipping described above was
for all, andS` (point at infinite time) was a regression para-
eter for all. The long-dashed curve is for the longerTEE, and
none of the diagnostic parameters suggest any problems
these data.

The remaining curves are for the shorterTEE. The solid
urve, which goes offscale, is with UPEN with the ab
arameters andb00 5 1. The short-dashed curve is the dis-
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281INVERSION OF MULTIEXPONENTIAL DECAY DATA
bution without NN, the nonnegative constraint, giving a n
ative area 53% of the total. With NN, the parameterRrv 5
0.185, indicating a bad fit. Excessive sharp detail for this
of sample is indicated byF sd 5 12.3. Excessive cost of NN
indicated byRrno 5 0.08, indicating a problem distribution th
s essentially the opposite of the possibility discussed abo
n unresolved marginally resolvable feature. The dotted c

s with the overall complianceb00 5 0.25, where normal is 1.
This is equivalent to overestimating the noiseR by a factor o
2. We now get a unimodal distribution withRrv 5 0.8, a hug
alue which indicates data problems severe enough tha
ot clear what interpretation to make of this distribution. W
uestionable data there is diagnostic value in plotting the e
f fit. With normal processing parameters, this distribution
ight consecutive windowed data points, representing a
70 echoes, at times near 300 ms and with errors'12Rv; near

180 ms there are six points, representing about 70 echoes
errors '22Rv. The relaxation curve does not represen
plausible distribution of relaxation times. By comparing
distribution with the problem-free distribution for the lon
TEE, we can see that the distribution for the shorterTEE is

robably even qualitatively wrong. The long-dashed curve
he longerTEE is substantially higher in the 50–100 ms ran
whereas any diffusion effect for the longerTEE would only
reduce the amount of signal at the longest times. Thus, we

FIG. 2. Distributions of relaxation times for a porous sandstone sa
saturated with brine. The long-dashed curve is for the longer of two even
spacings, and diagnostic parameters do not indicate data problems f
curve. The short-dashed curve is for the shorter echo spacing, with
processed with normal parameters except that NN, the nonnegative con
is not imposed, resulting in three peaks and in large negative excursion
solid curve, also with three peaks, is with normal parameters, including
The parameterRrv 5 0.185 indicates that a good fit is not possible, andRrno 5
0.08 indicates excessive cost of NN. The dotted curve is with the o
compliance factorb00 5 0.25 instead of the normal 1.0, using severe o-
moothing to get a unimodal curve and a very bad fit to the data. Comp
ith the curve for the good data with longer echo spacing shows tha
versmoothed curve is not even qualitatively correct.
-
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confirmation of our diagnostic reasons not to trust the dat
the shorterTEE.

Marginal Resolution: One Peak or Two Peaks?

The lower part of Fig. 3 showsT2 (CPMG, windowed
distributions for a food product. It is very clear that the dis
bution of relaxation times does not consist of a single s
line. However, a common question, important for phys
interpretation, is whether there are two populations of si
sources that can be reliably separated on the basis of the
relaxation data. We will here go to considerable lengt
demonstrate a number of different diagnostic tests to d
whether the relaxation data alone can reliably separat
tentative two populations, and we have picked a case
leaves the answer in doubt. In most cases the relaxation d
not rule out two populations, but they may or may notrequire
two populations.

The solid curves of the lower part of Fig. 3 are forTEE 5 0.6
ms and the dashed curves for 1.0 ms. The light curves are
the weighting-factor clipping, and the heavy curves are w
out. The 0.6-ms data have SNR5 580 and the 1.0-ms data 68
At 150 ms we have=150/0.65 15.8 and=150/1.05 12.25
Thus, effective SNRs are about 9000 and 8000, respect

le
ho
this
ata
int,
he
.

ll

on
he

FIG. 3. Distributions of relaxation times (lower) and errors of fit (upp
for a food product. The solid curves are for an even-echo spacingTEE 5 0.6
ms, with normal parameters, giving two peaks, and with a limit on weig
factors at long times (see text), giving one peak. The dashed curves s
similar result forTEE 5 1.0 ms. The text gives criteria for resolution of t

eaks, showing just adequate signal-to-noise ratio to resolve the two
owever, it can be noted that the errors of fit, shown in the upper part, a

andom. The errors for three data sets, withTEE 5 0.6, 1.0, and 2.0 ms, are
lotted and are nearly the same, where they should be uncorrelated, a
lso have large excursions at about 500 ms. We cannot safely say that th

wo peaks; better data must be acquired for an answer.
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282 BORGIA, BROWN, AND FANTAZZINI
However, for reliable use of such high SNR it is necessa
have correspondingly small systematic errors or data d
tions. To see whether this SNR is high enough to ex
without systematic errors, to be able to reliably resolve the
peaks, we use Eqs. [11–12] from Ref. (1), which gives criteria
for resolution of two equal sharp lines a factorY apart:E2 5
y2/(6.87 1 15.9y 1 7.2y2), y 5 (ln Y) 2/12, and SNR.

Dq/E2. However, the peaks in Fig. 3 have significant wid
specially the one at shorter times. The centers are separa
bout 0.99 Np, and the mean halfwidth is about 0.22 Np. I
rbitrarily subtract the mean halfwidth from the separatio
rder to apply criteria for resolving two sharp lines, we g
educed separation 0.77 Np, giving a separation ratioY 5
0.77 5 2.16. We getE2 5 0.0003185 1/3142.Thus, an

effective SNR of the order of 3000 is required for marg
resolution, and several times that is required for firm res
tion. This is just what we have for the data (8000 or 900

We note that the peaks in the lower part of Fig. 3 are
resolved at eitherTEE value if the weighting-factor clipping
used and that they are resolved if it is not used. Howeve
diagnostics are somewhat different for the two unreso
distributions. ForTEE 5 0.6 ms the maximum data time is 12
ms, about four times the maximum relaxation time. WhenS` is
used as a regression parameter and the weighting facto
clipped at long times, there is the possibility that the regres
computation can adaptS` slightly to somewhat smooth t
distribution at shorter times. The data are taken with m
signals stacked and with phase cycling to nearly zero
baseline. For the run giving the light curve (with weighti
factor clipping),S` ' 2Rv, or an order of magnitude larg
than the effective noise even with the clipping. For the 0.6
data withS` as a regression parameter, it was possible to
b00 to very high values without resolving the two pea
However, withS` [ 0, the two peaks are resolved withb00 5
1. The use ofS` as a regression parameter also buffers
transition from no NN constraint to use of the constraint.
cost of NN, as given byRrno, is small, becauseS` can adapt t
this change.

The situation is different for theTEE 5 1.0 ms data. Here th
data extend to 2000 ms, which doesn’t allow much adjust
of S` for smoothing a feature at shorter times or adapting t
ransition from no NN to NN. Even with application of t
eighting-factor clipping an increase ofb00 to 1.3 gives reso-

ution, unlike the case for theTEE 5 0.6 data where the da
extended only to 1200 ms. The parameterRrno 5 0.08, indi-
ating excessive expense of NN, again unlike the cas
EE 5 0.6 with weight-clipping. In many cases the exces

expense is because of systematic data errors or distortio
the relaxation curves; however, here we must conside
possibility that it might be because of unresolved, margin
resolvable peaks. Removing the clipping gives resolution

The above considerations suggest a meaningful reso
into two peaks, but without “overkill.” However, the errors
fit should be examined for clues to any data distortion
to
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might artificially sharpen or split distributions. Unfortunate
we find a repeatable, nonrandom, error pattern for the data
TEE 5 0.6 and 1.0 ms and also with a further set withTEE 5 2.0
ms, as shown in the upper part of Fig. 3. Over some region
errors are somewhat cyclic and almost identical for three
sets, where the errors should be unrelated. Furthermo
about 500 ms, there are groups of several points, repres
many echoes, at several times the rms error. We believe
this is a case where the UPEN processing of data in nearl
time might have indicated the need for instrument adjust
while the sample was still available. Without better data,
not safe to say that there are two separated populations.

Absolute-Value Signal Amplitudes

Figure 4 shows a set ofT2 relaxation data apparently r-
corded as absolute value amplitudes rather than as p
signals, without being so designated. When processed
clipping of weighting factors, regression onS`, and assump-
ion of phased data approaching a baseline (hopefully zer
n any case with statistically stationary random noise), the
ashed curve of Fig. 4 is obtained. The peak is unrealisti
arrow, going far off scale in the figure. The thin solid line

he same without the clipping. The sharp peaks are not
ible for the particular sample, but, apart from this, the d
ostic parameters indicate data problems. For these two c
rv 5 0.17 and 0.09 andRrno 5 0.15 and 0.13, respective

However,S` ' 100 for each, andRv ' 80 for each. For thes
hase-cycled data we are warned by seeing thatS` is about a

large as the noise. When the data are processed as

FIG. 4. Absolute-value (magnitude) data, not identified, and process
phased data. Absolute-value data taken with effective phase cycling, wit
extending to sufficiently long times, and processed withS` as a regressio
parameter, can be recognized by a positiveS` of the order ofRv=p/2, where
Rv is the noise level. The lightweight curves are from processing as if the
were phased, and the heavy curves are from processing as absolute-val
The solid curves are with normal parameters, and the dashed curves a
the limiting of weighting factors at long times.
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283INVERSION OF MULTIEXPONENTIAL DECAY DATA
absolute values, the square root of the sum of the squares
in-phase and quadrature signals, we get the two heavy c
which are nearly identical. The heavy dashed curve has we
ing-factor clipping, and the solid one does not. For the
cessing with the absolute-value assumptionRrv ' 2.03,Rrno '
0.01, andS` ' 20.1 3 Rv, all indicating a good solution
good data assumed to represent absolute values.

Peak Sharpening and Splitting by Baseline Problems

Figure 5 shows the consequences of using a wrong val
baseline signal. This can be the result of instrumental drift or
problems, but here artificial data are generated from known
els and data processed with several values of the baseline
S̀ . In Fig. 5 the dashed curves show the models, which
rectangular distributions of relaxation times; in the upper exa
the width is a factor of 2, and in the lower the width is a facto
5. Random noise of unit rms value has been added, and the
signal is 200 in both examples. After the data were generated
were windowed as described above, using 5% relative win
widths. The data extend to 1000 ms, which is only a factor o
or 2.0 beyond the longest relaxation times.

The unimodal curves approximating the dashed m
curves are processed with UPEN withS` 5 0. The off-scale

FIG. 5. Artificial T2 data for rectangular distributions of relaxation tim
with models shown as dashed curves. Width of the upper distribution is a
of 2, and width of the lower is a factor of 5. Both have random noise with
rms value and zero mean, and both have an initial signal of 200. N
processing withS` 5 0 gives the solid curves approximating the mod
Processing withS` as a regression variable (not shown) gives nearly the
urves. The effect of baseline errors is shown by settingS` 5 1.5 (1.5 time

the individual-echo rms noise), giving the sharp peak in the upper figur
the two peaks in the lower figure.
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sharp peak in the upper figure and the bimodal curve in
lower figure are processed withS` 5 1.5, namely 1.5 time
the noise. This small positive value ofS` has the effect o
bending the logarithmic decay curves downward, tendin
artificially sharpen or split peaks on relaxation time distr
tions. The effects of slightly negativeS` values (not shown) a
much less pronounced. In fact, regression onS` gives values o
the order of20.5, with distributions not much different fro
those shown forS` 5 0. Going toS` 5 22.0 (not shown
produces significant tails toward long relaxation times.

Peak with Tail

Figure 6 showsT2 distributions for a sample of fractur
carbonate rock saturated with water. In this example the
nostics discussed above do not indicate problems with the
The heavy solid curve shows the UPEN solution with
normal parameters. The heavy dashed curve is with a
smoothing coefficient, giving an rms error of fit 0.16% hig
than for the UPEN solution (not significantly different). T
peak is significantly wider, but the feature most easily m
terpreted is that the distribution appears to be broken into
populations. The tail of the distribution is fit too well in t
sense that the oscillations allow additional fitting to the no
The peak is not quite adequately fit, because it is o
smoothed, while the tail is undersmoothed. Very similar cu
(not shown) were obtained using amplitude smoothing or s
smoothing with coefficients chosen to give the same error
as for the UPEN solution. Likewise, a similar solution w

tor
it
al
.
e

nd

FIG. 6. Distributions for a fractured carbonate rock saturated with w
The heavy solid curve is for the UPEN solution with normal parameters
diagnostics do not suggest any data problems. The heavy dashed curv
curvature smoothing and a fixed smoothing coefficient giving 0.16% h
rms error of fit. Very similar curves (not shown) were obtained by us
singular value decomposition instead of a penalty function or by using slo
amplitude smoothing to give the same error of fit as by UPEN. The light
curve is for curvature smoothing with 10 times stronger fixed coefficien
gives 27% higher error. The light dashed curve is with a further factor
for a fixed smoothing coefficient and gives 2.5 times the rms error fit o
UPEN solution.
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obtained by using singular value decomposition (6) instead o
a penalty function.

The thin solid curve of Fig. 6 is with the fixed smooth
coefficient increased a factor of 10, increasing the rms err
fit 27% and still leaving three peaks. Note further that
smaller peaks are not at the same times on the inversion
the different smoothing coefficients; in fact, the peak at sh
est time extends to times significantly shorter than for
UPEN solution or that with the lesser fixed smoothing. Fur
increasing the smoothing coefficient a factor of 20 gives
light dashed curve, which has rms error of fit a factor of
worse than for the UPEN fit, and which still has a pronoun
minimum.

DISCUSSION AND CONCLUSIONS

The UPEN method of inversion does not require spe
input of data point spacing, whether equally spaced in t
log-time, or with other spacing schemes. However, if po
have different statistical weight, the weighting factors mus
used in the linear inversion done in each iteration. IfT2 data are
taken with large numbers of echoes, the data can be ave
in windows as described above to give manageable numb
data points for computation without losing significant inform
tion. Normally, there is no user adjustment of smoothing
rameters, although the program computes the noise leve
uses the square of this as a factor in computing a smoo
penalty.

A basic feature of UPEN is that it provides much stron
smoothing of broad slowly varying regions than it does
sharp peaks. This allows presentation of sharp peaks w
unnecessarily appearing to “resolve” peaks in a broad
Since it is not necessary to oversmooth a sharp peak to
reasonable overall distribution, there is the possibility of
ting spurious sharp detail as a result of systematic data e
particularly those that correspond to a slight downward b
ing of the logarithmic decay curve. Numerous diagnostic
tures are presented to try to identify data sets subject to
systematic errors. These features suggest the usefuln
running UPEN in nearly real time when taking important d
permitting attempts at improving the data while the samp
still available.

Examples of the use of diagnostic features are given, in
ing a discussion of a case where it is important to k
whether the relaxation datarequirea pair of resolved peaks
leave open the question of whether there is a single peak o
peaks.

UPEN now applies an amplitude penalty with amplit
feedback for regions of a distribution of relaxation times
side the range of the data. UPEN now goes through
cycles of computation to provide diagnostic information an
permit certain automatic changes in the computation, bas
diagnostic parameters.
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APPENDIX

List of Symbols

R Noise (rumore, Rauschen); by itself or with one inde
R indicates a noise value; with two indicesR indi-
cates the log-ratio of noise values; with one in
plus “no” (“new/old”) it refers to the log-ratio of th
particular category of noise after and before app
tion of NN. Symbols defined and used only loca
may not be on this list.

b00 Overall multiplier for the smoothing compliances (inve
smoothing coefficient). See Feedback for the otherb’s.

D Window width relative to central time. See Eqs. [1–
Bi Weighting factors for windowed data (or for differen

in rms noise for any reason).
Ei Individual error of fit (usually displayed asEi=Bi to

give uniform amplitudes for random noise).
F sd A parameter related to the form of the distribution, w

large values indicating considerable sharp detai
Fmm A parameter related to the form of the distribution, w

values.1 indicating multimodality.
k The kth computed amplitude on relaxation time dis

bution.
Na Number of points used in connection with early sig

alternation. See Eqs. [15–16] and Signal Alterna
and Data Midpoints.

NN The nonnegative constraint on the computed dist
tion.

R Ensemble-average rms noise for a single channe
phase or quadrature) for individual data points
fore windowing, if any).

Rr rms error of fit to the data. See Eq. [13].
Rv Noise computed from variation of errors of seco

nearest neighbors.Rv is intended to reduce the effe
of systematic data errors of the estimates of the n
See Eq. [14].

Re “Effective noise”5 R/=data points per Neper in tim,
as discussed under Effective Noise.

Rrv 5ln(Rr/Rv). Substantial positive values suggest sig-
icant systematic errors.

Rrno 5ln[Rr(new)/Rr(old)], where “new” is after and “old
before application of NN. Substantial positive val
suggest significant systematic errors.

R12 Large R12 suggests alternating errors of early poi
See below Eqs. [15–16].

S` The asymptotic signal at infinite time, whether co
puted as a regression parameter or imposed.

si The i th data point of a (possibly windowed) set
points used in the computation. See windowing
cussion.

SNR Signal-to-noise ratio.
t (Lower case, perhaps with subscript) data time.
T (Upper case, perhaps with subscript) relaxation tim
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TEE Time between echoes employed, whether all echo
even echoes.
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