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The basic method of UPEN (uniform penalty inversion of mul-
tiexponential decay data) is given in an earlier publication (Borgia
et al., J. Magn. Reson. 132, 65-77 (1998)), which also discusses the
effects of noise, constraints, and smoothing on the resolution or
apparent resolution of features of a computed distribution of
relaxation times. UPEN applies negative feedback to a regulariza-
tion penalty, allowing stronger smoothing for a broad feature than
for a sharp line. This avoids unnecessarily broadening the sharp
line and/or breaking the wide peak or tail into several peaks that
the relaxation data do not demand to be separate. The experimen-
tal and artificial data presented earlier were T, data, and all had
fixed data spacings, uniform in log-time. However, for T, data,
usually spaced uniformly in linear time, or for data spaced in any
manner, we have found that the data spacing does not enter
explicitly into the computation. The present work shows the ex-
tension of UPEN to T, data, including the averaging of data in
windows and the use of the corresponding weighting factors in the
computation. Measures are implemented to control portions of
computed distributions extending beyond the data range. The
input smoothing parameters in UPEN are normally fixed, rather
than data dependent. A major problem arises, especially at high
signal-to-noise ratios, when UPEN is applied to data sets with
systematic errors due to instrumental nonidealities or adjustment
problems. For instance, a relaxation curve for a wide line can be
narrowed by an artificial downward bending of the relaxation
curve. Diagnostic parameters are generated to help identify data
problems, and the diagnostics are applied in several examples,
with particular attention to the meaningful resolution of two
closely spaced peaks in a distribution of relaxation times. Where
feasible, processing with UPEN in nearly real time should help
identify data problems while further instrument adjustments can
still be made. The need for the nonnegative constraint is greatly
reduced in UPEN, and preliminary processing without this con-
straint helps identify data sets for which application of the non-
negative constraint is too expensive in terms of error of fit for the
data set to represent sums of decaying positive exponentials plus
random noise. © 2000 Academic Press
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INTRODUCTION

The basic method of UPEN (uniform penalty inversion o
multiexponential decay data) is given in an earlier publicatio
(1), which also discusses the effects of noise, constraints, a
smoothing on the resolution or apparent resolution of featur
of a computed distribution of relaxation times. Numerou
examples of artificial and laboratory relaxation data have be
inverted by UPENZ, 2) and compared with inversion employ-
ing a fixed regularizing parameter, illustrating the ability of
UPEN to show, for instance, a sharp peak with a long low tai

The examples discussed in Ref) (vere of T, data with a
uniform data density in log-time, and the present work extenc
the use of UPEN td ', data equally spaced in linear time and
to multiexponential decay data spaced in any manner. Pro
sions are made for any necessary weighting of the input de
points, including where data points are averaged in windows
order to have a manageable number of input points for cor
putation.

The sections Inversion with Variable Smoothing and Fee
back for Uniform Penalty are complete, extended, and updat
versions of the corresponding sections in Rd), (ith the
present Egs. [2—-9] corresponding to Eqgs. [2—-9] of RBf. This
is to introduce and implement the windowing and weightin
needed for mosT, data and to remove the essentially unuse
surmise in {) that, if data density is variable, it should entel
explicitly in the UPEN computation as a factor in the smooth
ing penalty. Of course, denser data can force sharper detai

Some of the symbols used in more than one section are giv
in the Appendix.

AVERAGING OF ECHOES IN WINDOWS

T, data are usually taken using some variant on CPMG, tt
Carr—Purcell-Meiboom-Gill method, with equal spacing it
linear time. However, as many as®léchoes have been taken,
and it is usual to take hundreds or thousands of echoes. If &

'To whom correspondence should be addressed. E-mail: risbmes@Stematic data errors are smoothly varying with data time, al
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if the noise is additive, random, and normally distributed (or ¢
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least from a compact distribution), the averaging of data poirdbout the same range s The distribution of amplitudes at
into sufficiently narrow windows does not change the resuitlaxation timesT, (on the logarithmic time scale) ig,, and
with respect to that obtained by using all of the points withowf, = S.., the value of the signal at infinite time, may or may
windowing (when this is computationally possible). The conmot be also a regression parameter. To avoid excessive dete
mon practice of simply discarding most of the points at longenalty function is added to the squared error of fit, and the
times is simply a waste of good information, leading to aum is minimized. Common penalty functions are squares
decreased effective signal-to-noise ratio (SNR). Numbers aplitude, slope (first difference), or curvature (second diffe
points for computation can be, in some cases, reduced dxce). The function to be minimized is then of the form
orders of magnitude. A window with a full widtb = 0.05

times its center time is narrow enough for almost all real data " M
that we have. The first approximatelyf2 points should be left ¢ )2 2
unwindowed. These parameters are conservative, as for rei-:El (G + gl Gexp—t/T) = )"+ A gl 9k
search use. In most applications windowing can be more se-
vere, giving yet fewer points for computation. M-1 M-1
If most of the original data points are subject to random +D 2 (Gi1— 902+ C D (G — 20+ Geen) 2
noise of a given rms value, but if there are a few outliers (due k=1 k=2
to noise bursts, periodic spikes, etc.), then the editing of the 2]

data set should be done before windowing, and the windows
should not span gaps in the data. _ - . . .
If the jth echo has amplituds, at echo timet,, the ith whereA is the coefficient for amplitude smoothing, (differ-

window hasB, echoes in it with average signsland average €N¢€) for slope smoothing, ard (curvature) for curvature
timet;, j; = t/Tec (integer or half-integer) is the index of theSM00thing. We do not include thg, term in the penalty

window center, and ¢ is the spacing of the echoes employe&mcnon' Usually only one of the three kinds of smoothing i
(whether even echoes or all echoes), we have= 1/B; used.

SItE s s andt, = 1/B; ST E Y2 t,. Although the sums
can be evaluated exactly for an exponential signal, an integ
approximation is adequate for our purposes. The noise-fre€eTo introduce more equitable smoothing for sharp and bro:
part of the signak; is overestimated in the above average bieatures, we maka, D, andC in Eq. [2] variable, with subscript

lrtayersion with Weighting Factors and Variable Smoothing

the approximate factor k, and move them inside the summations. Although variab
smoothing can be implemented for amplitude, slope, or curvatt

TeeBil 2 . _ smoothing, we will discuss only curvature smoothing (but witl

L J e "Tdr = Sint{ (TeeBi/ (2T)] feedback from both curvature and slope), which we have used

TeeBi TeB 2 [TeeBi/ (2T)] a number of years. However, outside the range of relaxation tim

5 covered by the data, we are now applying additionally an amp
. 1 (TEEBi> 1] tude penalty, with amplitude feedback only.
6\ 2T )~ The averaging of points in windows requires the introduc
tion of the weighting factor®, into the generalization of Eq.

whereT is relaxation time. IfD is the relative window width [2]. We apply a curvature penalty, with both curvature an:
(width in time divided by center timeB;, = Dt/ T For the slope feedback, just as in Ret)(although the compliance (or
relaxation timeT the error term in Eq. [1] gives the absolutdeedback) parametetsof Ref. (1) have been changed Bis,
error (1/6)[Dt./(2T)] *exp(—t,/T). The maximum value of an because the change in the assumption about the appearanc
expression of the form®e ™ is 4/e* ~ 0.54.Thus, relative to data point spacing in Eq. [9] of Refl)inserts a factor of 0.08,

the initial signal, the error from averaging in windows is les#ie spacing used in all examples in Ref), (multiplying the
than0.0225D>2. former o’s. The amplitude penalty now applied outside the

data range adds th&-term of Eqgs. [2—3]. The quantity to be
minimized is now

INVERSION WITH VARIABLE SMOOTHING

Inversion with Fixed Smoothing and without Weighting N M M
Factors > Bi(go+ 2 gexp(—t/Ty) — s)2+ 2 Agi
. . . i=1 k=1 k=1
We wish to approximate a set of relaxation dgtataken at
timest; equally spaced i; = In t;, by a sum ofM expo M-1
nential components; ~ g, + = g.exp(—t,/T,), whereT, are + > Cul g1 — 20k + Giin) 2 [3]

the relaxation times equally spaceddn = In T, and covering k=2
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whereC, will be iteratively adjusted in regions of substantial g'Wg — 2s'BUg + s'Bs + g'Kg. [6]
curvature to be roughly reciprocal to the local curvature
squared (which itself depends on tg). The A/’s are zero We lets'BU = Y and minimize the above expression by

within the range of relaxation times covered by the data. Wigbtting the gradient with respect goto zero, giving
good SNR some extrapolation of relaxation time components ’

outside the data range is permitted. Theerm is used only if

the asymptotic value at infinite time is a regression parameter.
We now use matrix notation for Eq. [3]. There ddedata

times (spaced in any manner but without big gaps), with FEEDBACK FOR UNIFORM PENALTY

weighting factorsB;, which are represented by thi¢ X N

diagonal matrixB. There areM + M, computed components, Weighting Factors and Scaling of Signal and Noise

whereM = 1 if the signal value at infinite time is a regression

parameter, and, = 0 otherwise. The coefficient, are at time t; is normally equal to the number of data points

represented by the d'?‘gf’”"f" matrx W'th NONZEro compo- averaged in the window fax. However, the inherent weight of
nents only for relaxation times outside the range of times point, windowed or not, is inversely proportional to the
co;;e{r(?d by the dat?. d K th ¢ square of the point’s level of random noise, the noise of whic

€ componentsyy, s;, andx; make up the Veclorg ;o5 v, proportional to the noise of the individual data point

(Cqmpqted Idistributioth+ M,;’comporlegt?)tst (rtr;eas'ureoll divided by the square root of the number of points averaged
noisy signalN components), and (computed fit to the signal, the window. If different individual points have different inher-

N components), and if the components exp(T,) make up ent noise levels, this can be accounted for by differ@nt

the N X M+ M”) matri>.< U, we havex = Ug. values. If the individual data points have noise randoml
.The first term in Eq. [3] is theg'U'BUg — 2s'BUg + STB.S’ selected from a Gaussian distribution of half-wiRhwe can
with the last of these a con;;tant. We 18tBU = W. This either divide theB,’s by R? or else multiply the other terms in
(M + My) X (M + My) matrix need be computed only ONC&( 3] by R?. If we include the factor B’ in B;, we note that
for th'e iterative computation df unless changes are made irIhe first of the three terms in Eq. [3] becomlés scale-indepe
B orin s andt, : . ) dent. That is, the term is not changed by multiplying the inpt
For the curvature penalty term in Eq. [3] we first find th(?misy signal by some scale factor. Tgs are multiplied by the

contribution for unitC, for a singlek—yalue. This involveg., g same factor when the data are fit, if the fit is not changed oth
andg,... The curvature (second difference) at itk computed than by scale. The noise-free signal, the noise, and the fitt

. . (k) (k) . .
point is Vg, whereV™ is an M + M) X (M + M,) matrix function all become scaled by the same factor.

containing all zero elements except for the submatrix Of course, thay's in the other two terms of Eq. [3] appear
quadratically, so these terms are proportional to the square

Wg+Kg=Y; g=(W+K). [7]

In Eq. [3] the weighting factoB; for the windowed signad;

0 00O the scaling factor if theC’s and theA’s are left unchanged.
1 -2 1 [4] Thus, theC's andA’s are invariant with respect to scaling of
0 0O the data.

In the present version of UPEN the noiRes estimated in
each iteration (rather than input from separate computation,
in Ref. (1)) and may change significantly in the first few
iterations. If the weighting factors do not change with respe
to each other, it is not necessary to recompute the mgrix
merely to change a constant factor. Therefore, Eq. [3]
( 1 -2 1) multiplied by the factoR?, so thatR? appears as a factor in the

centered at th&th diagonal point. The contribution to the curva
ture squared igy'V¥'V¥g, where VP'V® is a symmetrical
matrix containing all zero elements except for the submatrix

-2 4 -2 [5] equations foiIC, andA,.
1 -2 1
Feedback

centered at th&th diagonal element. We now form the matrix To have a strictly uniform penalty, that is, the same contr
K (Kriimmung:curvature) by multiplying each matrx®"v®  bution to the right side of Eq. [3] for each valuelgfwe would
by its curvature smoothing coefficie@d, and summing the have to find a way to mak€, inversely proportional to the
matrices for alk-values from 2+ MytoM + My — 1. The square of the second difference. However, when the curvatt
coefficientsA, for the amplitude penalty are simply added tds zero or negligible, it is not possible or not meaningful tc
the corresponding diagonal elementkof The total penalty is makeC, large enough to maintain a truly uniform penalty a
g'Kg. Equation [3], and the quantity to be minimized, is novsuch points. We can obtain a penalty which is the same
given by points of significant curvature by a series of iterations, startir
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with a fixed C, and for each new iteration lettin@, be noise estimates defined later in Eqgs. [13—14]. Note that tt
inversely proportional to the square of the second differenparagraph and Eq. [9] have a substantive change from those
from the previous iteration. This does give adequate fits Ref. (1), in addition to extensions of the method. Removing
relaxation data and gives a penalty that is either zero factor of the data spacing replaces a factoApin Eq. [9] with
negligible or else a fixed value; however, this gives unsati8-:08, the value it had in all examples in Rel).(Another
factory distributions consisting of straight-line segments. Thihange is in defining slope between poikts- 1 andk — 1
can be improved considerably by relaxing the uniform penaltyithout involving pointk, resulting in a & reduction inp.
requirement somewhat and using at e&dhe highest of the This is to avoid a large slope contribution from a single-poir
second-difference-squared values foun#ét at 1, k, ork + 1 peak.
from the previous iteration. That i€, for the next iterationis ~ To approximate an integral of the fornfi C(Q)(d*g/
inversely proportional to the largest second-difference-squa@@?)°dQ for the curvature penalty by a discrete sum, we
found atk or a nearest neighbor. We can further improviclude the step sizA, as a factor in the coefficier@,. We
appearance in many cases by using also second-nearest neigh+ have
bors or points from an even wider window. However, a wide
W|ndow' mterfergg with .|mplement|n.g abrupt changes in C= R?AJ(Bo + Cy). [9]
smoothing coefficient. It is also possible to use only slope-
squareql feedback (msteaq Of curvature feedback) for curyathrrize C/’s from one iteration are used to give tlg’s for the
smoothing. In this case it is necessary to use the highes . . .
. . . next. The ternp, is a compliance floor, which should be small
slope-squared over a window extending about 0.3 Np in relax- . . .

: ; enough that it would never lead to undersmoothing, but whic
ation time both above and below the polatA useful com- “ B

. should be large enough to be a “seed” for the development

promise was found to be the use of both curvature and slope

. in the i [ . F ith either |
feedback and for eack to use the highest curvature Value%)urvature In the iteration process. For use with either Jow

found at the pplnt ora nearest nelghbo.r.. . equivalent to 80, as in Refl), where low SNR data were not
The smoothing coefficientS, are coefficients of rigidity for . ” .
AP .presented). It is not critical, but it cannot be zero.
the computed distributions. Therefore, the feedback to adjus . . .
he A, term of Eq. [3] is the amplitude penalty applied for

the Cy to give roughly uniform penalty consists of loazdm relaxation times outside the data range and is implemented

p:fr:(;if ?ﬁf:?,&g'oun:efgogobzthcsrlﬁpﬁaﬁgs C;:\;?é;r;p-g?} Iméimply addingA, to the kth diagonal element oK (see Eq.
P P b P b [6]), with A, = O within the range of relaxation times covered

denza:slope) anq a curvature compliance parameigrto by the data and
define the compliance

Ck = BpAé( Okr1— Okn)” Ac= RZAQ/(BO + B.9Y) [10]

igh SNR dataB, is now made very small (10 rather than

+ Bemax{ (g1~ 205 + j+1) Jeic ke [8] outside the data range, without contributions from neighborir
points. The compliance parameter for amplitude feedback f
, the amplitude penalty ig, (a for amplitude). The curvature
_Whe“? thep's are constants that are not changed from orygfenalties are applied to the entire range of relaxation times f
iteration to the next nor from one data set to the next. T fie computed distribution, including those outside the range

factor of Aé. s _to preserve the rat_io .Of approximate first anﬁata times. The relaxation times for computed points are us
second derivatives when the spaciigin Nepers of computed ally extended a factor of 5 above and below the range of t

points is changed. data, with distribution values and slopes being zeroed at es
end. That is, the first two and last two points are forced to zer
although, in the actual computation, these are virtual points a
The residuals term (left) and the penalty terms (right) of Ego not extend the range of the parameter space.

[3] should somehow be balanced in finding the quantity to be The current “default” values of thg's are, = 10°°, B, =
minimized to get the distributiog,. In the vicinity of a good 0.5,8, = 0.6, andB. = 0.3. In addition, the program usgs,,
solution to good data the residuals term from the minimizatiarormally 1.0, which can be used to multiply all tigs to

of Eq. [3] is primarily due to the random noise.Rfis the rms uniformly increase or decrease smoothing.

noise, the penalty terms in Eq. [3] should be proportion&to  The wide possible range of the smoothing coefficiéptis

to preserve appropriate scaling when the input noisy signalsisown in Fig. 1, which is for a set of artificial data contrived tc
merely multiplied by a factor. We therefore multiply the penillustrate the uniform penalty feature of UPEN. The mode
alty terms byR? as mentioned above, although we couldonsists of random noise of unit rms value and zero mean
alternatively include a factor R? with the weighting factors sharp line with amplitude 1000 at 2500 ms, a Gaussian line
B. For the ensemble rms noifewe use a combination of theamplitude 1000 and half-width 0.15 Np at 800 ms, a half

Balance between Smoothing and Noise
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l

solve the two sharpest peaks almost to baseline, still grea
widening them, breaks the remaining part of the distributio
into three peaks, almost to baseline. The peaks (not shown)
at 1.6, 22, 157, 680, and 2360 ms and do not represent |
model well. The solution with the fixed smoothing coefficien
would be strongly rejected by the diagnostic parameters to |
given in a later section. Further examples are given in Ref
1, 2.
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Absolute-Value Data

Most of the relaxation data processed by UPEN have be
phased data, hopefully the sum of positive exponentials wi
added zero-mean random noise. However, data are sometir
taken as absolute-value d8a= V'S; + S;, whereS, andS,
are the in-phase and quadrature signals (or signals at 9
whatever the phases). The noise, of course, no longer avera
; to zero. IfR is the rms single channel noise, the noise-fre
0. 1 10 100 1000 10000 signal isS, and if x andy are samples of Gaussian randon

Relaxation Time  (ms) noise with unit rms value and zero mean, then the ensemt
average ofS, is given by averaging over the possible noist
values:

&

e & AL e oW

logyy of Coefficient or Penalty
5

FIG. 1. The lower figure shows the smoothing coeffici€qt(heavy solid
curve) and penalt€,(g. 1 — 29« + Ji:1)” (heavy dashed curve) for a set of
artificial data with added random noise (parameters in text). The solid curve of
the upper figure shows the model distribution of relaxation times, and the 1 (= .
plotted points arey,, the UPEN solution, with part of the curve shown also _ - [P L w2 = 2
10X. The solid horizontal line at-0.5 in the lower figure shows the uniform (S)IR= s J J' \‘J(S/R X7+ y
penalty value of the curvature penalty at most regions of significant curvature, x=—o “y=0
either large or small. Under the very sharp peakirat 2500 msC ~ 1077,
whereasC ~ 100 from 0.5 to 5 ms, giving a range of %lfor the smoothing X ex;{ — E (X2 + yz)} dxdy [11]
coefficient, not counting extremes at regions of transition or baseline. 2

Gaussian extending downward from 800 ms with amplitudenis can be expressed in terms of modified Bessel functio
1000 and half-width 2.5 Np, and a Gaussian line of amplitud8), but it is easy to compute a table of values by direc
200 and half-width 0.3 Np at 20 ms. The UPEN solutiorintegration. The right-hand side of Eq. [11] equ&&R for
shown by the plotted points, is substantially identical to tHargeSandV #/2 for S— 0. If Eq. [11] is used as a transform
above model, shown by the solid curve in the upper plot. for individual data points, the estimat&values have a bias.
In the lower part of Fig. 1, the heavy solid line shows thelowever, this effect is usually reduced somewhat by the fa
smoothing coefficienC,, with a value 10" under the sharp that T, data at low signal values are usually at times lon
peak at 2500 ms and a value of about 100 at the foot of the venyough so that the processed data points represent window:
wide Gaussian near 1 ms, giving a range of a factor 8fIis  which many individual points are averaged. Referedead
range does not include the regions of insignificant curvatureferences therein discuss statistical treatments of absolu
shown in the figure, such as the valu€ 16 the short section value data.
of NN-enforced baseline between the two main peaks. To apply transforms related to Eq. [11] one must dec
The heavy dashed line shows the penalty, which is roughdgparately with baseline problems if they exist. Detection ci
uniform only in the regions of significant curvature penalty, natuits may have nonzero baselines, and older instruments w
including inflection points and sections of baseline (includingimple diode detection may have nonzero baselines related
those determined by NN). The solid horizontal line-&.5 is a forward voltage drop in detection. Most modern relaxatio
drawn for reference for the highest penalty regions. The petfata are taken with phase cycling schemes to give baselir
alty near 1 ms at the foot of the very wide half-Gaussiatlose to zero, and, i§. is a regression parameter, substantic
centered at 800 ms is about the same as the penalty at the wetyes ofS./R, for T, data may indicate data problems. Here
sharp peak. R, is a noise estimate derived from the data and defined la
Figure 1 also illustrates the ability of UPEN to show peakis Eq. [14]. In particular, ifS./R, is comparable tov /2 one
at various widths without broadening the narrow ones or splithay suspect absolute-value recording of data. We have |
ting the wide ones. Processing the data of Fig. 1 with @ived numerous sets of data that are apparently absolute-ve
compromise fixed smoothing factor just small enough to réata but not identified as such.
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At present we use a “quick and dirty” transform for absolutements, fo 5 s wehave SNR-effective= 500 X \/50,000=
value data rather than more elaborate statistical procedurked, X 10°.
which do not appear justified in many applications, especially It is probably not possible to have sources of systemat
if the absolute-value recording is done because of phase prelror all smaller than 10 times the initial signal. Many
lems or other data problems. We process the si§ngiven by factors, including constancy and accuracy of the various pul
the transform sequences, amplifier linearity, baseline drift, and electric
interference, can lead to errors larger than the effective noi
level. Even less drastic examples can give effective noise low
than plausible instrumental accuracy.

S= S =sgnS,— S)|S:— S,

S.= RY1+ (6.4S/(16 + S% + .5)/S7], The very fact that a smoothing or “regularization” coeffi-
cient does not need to be a compromise between that nee
Si=S/R, R.=SJ/w/2 or R, [12] for a sharp feature and that needed for a broad feature can e

UPEN to give spuriously sharp features on a distribution ¢
In the expression fos, the terms 1+ 0.5/S2 are from the relaxation times in response to systematic distortions of tf
expansion for larg&,/R,, and the remaining part comes fronflata. A slight downward bending of the decay curve ca
a rough fit to (S)/R)? — (YR)? — 1 — 1/[2((S.)/R)?] from artificially sharpen a line or even split a peak. A baseline dri
Eq. [11]. R, is an estimate OR, the ensemble-average singlecan lead to artificially sharp peaks at long relaxation times.
channel noise, and it is taken froB: if available and other _ )
wise fromR, (See later, Eq. [14]). In either case, any nonzefdPEN and Diagnostics

baseline must be know8, should not be much smallerth&  The fact that UPEN can appropriately smooth a broad cor
and certainly not negative. ponent of a distribution such as a long tail on a peak but st

With absolute-value data it is necessary to limit the compyynt oversmooth a sharp peak allows UPEN to give an adequ:
tation of the estimated noise to the data interval with substag-o “|egitimate” data, namely, data corresponding to the sut
tial signal, because the noise statistics are completely differgfit positive exponential components with relaxation time
for low SNR. No attempt was made to correct the statisticgithin the range covered by the data. Extensive testing
treatment of the low SNR region in the regression computatiqppeN with artificial data yields adequate fits to all data exce

in a few cases, to be discussed later, of unresolved lines w

PROBLEMS OF INVERTING “REAL” DATA SNR for the feature in the range for marginal resolution b
criteria given in Ref. ).
Effective Noise and Systematic Data Errors rms error of fit. If UPEN does not give an adequate fit to

Whatever the time sequence of the data points, equaﬂ et of data, it appears that some problem with the data exi:
écourse, it is necessary to know the random noise level

spaced in time, log-time, or other, the denser the data t hat fit is ad q . his sh
more information is available or the lower the effectiv%nOWW at fitis adequate. For many data regimes this shot

noise level. We therefore define an effective noise levBf known to within about a percent for diagnostic purposes.

R. = R/\V/(data points per Neperyvhere the noise level of IS often difficult to know the noise this well from “blank”
thee individual data points i&. By this definition,R, is not measurements, such as that without sample or without cert:

affected by the windowing or nonwindowing of the data. pulses. UPEN now generates several different noise paramet

T, data are often taken at equal intervals in log-time, givinfgOm the data. The paramet®, without subscript, is the

a constant density of data points and a consRinover the ssumed statistical random noise level of the individual da
interval covered by the data. Howeva, data are often taken POINtS, With any variability and effects of averaging in win-
by sequences that give data equally spaced in linear time. ﬁﬂé{‘/s being indicated by the weighting factd@s If the resid

point density in points per Neper &t/Te)/d(In t) = t/Tee. ualsE; are the errors of fit to the final (possibly windowed)

We then havlR, = R/\/t/Te that is, the effective signal-to- data points, and the \'Neight.ing factors mentioned .abovBare
noise ratio is proportional to the square root of data time. 2nd there arél (possibly windowed) points used in the com-

If the data are ideal in the sense that they consist of randdtation, we defind; as the residual error parameter,
noise plus the “true” decay signal, free of any systematic errors

or instrumental distortions, then much more detail is available N
from T, data at long times than at short times. For instance, if RZ= > BEZN. [13]
we have a data point spacifie = 0.1 ms and have one i=1

feature with a relaxation time of 0.5 ms and another at 5 s, the

ratio of times is 10,000, and the ratio of effective noise valudhis weighting is used to give equal importance to the noise
is 0.01 = 1/v/10,000 If the individual-point signal-to-noise long and short data times when relaxation times cover lar
ratio is SNR= 500, as is often found in laboratory measureranges of times (not to give the best statistical estimate)of
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The factor of /B, for each factor of; is to offset the noise ~ Baseline. T data are usually recorded with phase cycling
reduction by the averaging in windows or other known inhereasequences that should produce a baseline at zero amplitu
differences in noise level. The kurtosis of the distribution dJPEN can be run with or witho&.., the signal at infinite time,
VBE; is computed to warn of wild points or major dataas a regression parameter.Sf is a regression parameter, a
excursions. large S./R, may indicate data problems for phase-cycled

Random noise. Rcan, of course, be larger than the actudlata. _ _
random noise if the fit is not good for any reason. If there are The UPEN output to a spreadsheet for plotting gives also tt
enough data points, one can get a better estiRatév for individual errors of fit. Viewing these can often help in iden-
variation ofE;) of the random nois®& by comparing the errors tifying data problems, such as early signal alternation, baseli
of fit of second-nearest neighbors, problems, oscillations at a particular frequency, or error excu
sions at a particular time.
1 N—-2

R2 = SN2 > (V/EEi _ VREHZ); [14] Warnings and Countermeasures for Systematic Errors

i=1 UPEN posts warnings when various parameters are in ranc
_ _ to suggest possible data problems or reasons to give spet
The intent is thaR, should not be greatly affected by slowlyattention to a data set. In addition, some countermeasures

varying nonrandom errors of fit, thereby giving a better estiyailable as options to be applied either automatically or ma
mate of the random error. A useful parameter to indicatgyly.

significant nonrandom errors of fit 'E_W - _ln(R'/RV)'_T_h'S Signal alternation and data midpointslIf R,, is excessive,
parameter should normally be negative, since the fitting prp-. & <y signal values are replaced by the fikstmidpoints:
cedure minimizes the errors of fit themselves (together Wifil ; '

. X _ “that is, the first points, is replaced by (s, + s,), with
smoothing penalty) rather than differences of fit among neig orresponding time midpoints, etc. Under some circumstanc

bors. (5) there is some degree of validity to the use of midpoints; i
Early signal alternation. The reasorseconenearest neigh- any case there is less tendency for the early alternation
bors were used is that a common data problem is an alternatig&tort the statistical parameters for the whole distributior
of early data points about any plausible fit. The use of neargghen this alternation occurs, components at very short tim
neighbors would give an artificially largR, with early point are subject to doubt, whatever is done in the computation.
alternation. HOWeVer, |t iS Useful to haVe Separately an indicﬁfere iS reason to give more credence to certain pointsi such
tion of the early alternation problem. We define the even points, then it is clear that the midpoints may be
error; however, if this is the case, the data points should |
edited accordingly. When there are no large very short cor
ponents, the use of the early midpoints does not appear to he
much effect on the computed distributions. However, suc
Na o diagnostic parameters &5, are much more usable, and often
Ri= N > (\BE — BiEi)? [16] some obvious artifacts are eliminated at times even beyond t
Fim1 first N, points. In some cases the use of the midpoints avoi
wild positive or negative peaks at short times.

whereN, = 16 at present. We now s&;, = In(R./R;). A Clipping weighting factors on approach to baselincSome
large value indicates the early alternation problem. common problems witff, data appear to involve the approact
Negative excursions without NNAs discussed in Reflf, to baseline. The effective random noise leRelcontinues to
the variable smoothing feature of UPEN leads to a greafcrease at long times, and the possibility increases that s
reduced dependence on NN, the nonnegative constraint. Ma@atic errors from drift may become larger tHan Some of
data sets that do not lead to sharp lines do not need NN at f{ese problems appear to be significantly reduced if the weig|
At present, UPEN executes a number of iterations withojfg factorsB; are clipped at the level at the longest relaxatiol
application of NN and computes the fraction of the distributiofime with significant amplitude for the distribution. Before
that is negative. Although without NN, sharp peaks can haggplication of NN the distribution may end with a negative
substantial overshoot and undershoot, an excessive negag¥gk, which may be legitimate if the distribution ends sharply
excursion indicates a probable data problem. leading to undershoot; however, some distributions appear
Cost of NN. Also another important diagnostic parameteend in negative peaks because of data problems at the lon
is derived from the series of iterations without NN, and that iimes. With NN, a sharp final spike, possibly even separate
the cost of NN in terms of quality of fit. The “newR, (with  from the rest of the distribution, may result.
NN) is compared to the “oldR, (without NN) by the param The above clipping of weighting factors reduces the abilit
eterR,,, = In[R,(new)R,(old)]. to resolve a pair of lines at the longest relaxation times abo

1 N
R3= 5= > (\BE — \Bi.:Ei12)? [15]
2Nai=l
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as much as reduction of the overall compliance fagigby a 1.0 or some particular range. A drastically differént, espe
factor of 2 or a decrease of the signal by a facton. cially a much larger one, may indicate a data problem.

Clipping weighting factors for high effective SNRMany A related parameter is an indicator of a multimodal charact
of the problems of systematic errors are less severe with I@k@ distribution,
than with high SNR. In fact, UPEN may not function with
some noiseless artificial data unless a lower limit to the com- M-1
puted noise is imposed. For specific data-taking conditions it Fom= 2 |Gki1 — 9d/(20ma, [18]
may be appropriate to lims,VBi/R,, wheres, is the initial k=1
(maximum) signal, to some maximum effective SNR.

Clipping compliances for narrow lines.It is possible to where g,.. is peak height. If the distribution is unimodal,
employ the negative feedback for the smoothing coefficient .. = 1; if there are two equal and separated pebks, = 2.
UPEN for all but the narrowest lines. This is accomplished bihus, in some sensg&,,, is an index of multimodality.
clipping the computed compliances at a value corresponding tcExcessivelS,| with T, data. We normally useS. as a
a peak of a given minimum width, thereby preventing excegegression parameter far, data, becauss, is seldom known
sively sharp peaks or split peaks, without oversmoothing an accuracy commensurate with the effective SNRdata
broader features. Again, this may interfere with legitimatgay or may not be taken with baseline controlled to thi
sharp or resolved lines from ideal data with random noise. degree. IfS, is made a regression parameter, it is a usef

Excessive R and/or R,,. An excessiveR,, or R, indi- diagnostic parameter under circumstances wiershould be
cates a bad fit to the data and probably indicates a problem wigry small compared t&,. Of course, if baseline igeliably
the data. One then has the opportunity to assess the probléfgwn to be very small, then the information should not b
and make decisions. For instance, plotting the errors of fit m#jasted by includings.. as a regression parameterSf is not
show that the first point is bad or that a point at a very long tinfecurately determined by numerous baseline points, it has
has been subject to drift. smoothing effect that can in critical cases make the differen

Marginal resolution. Special attention is required for thebetween resolution and nonresqlution of a pair of peaks. Ont
case whereR,,, has a moderate positive value am, is other hand,.a wrong a_ssumpt|on of zero baseline, when
comparable, here indicating a reasonable fit obtained withcirou!d be slightly negative, can lead to a false apparent re:
NN, but with a substantial cost of NN. This usually indicate4/tion of peaks that would not be shown as resolved when t
data problems, but the special case of unresolved, but mardiflrect baseline is used.
ally resolvable, peaks is a possibility. If the peaks are not ever/*S has been mentione8, values of the order oR,\ /2
close to being resolved, or if they are resolved, the cost of N2y indicate data recorded as absolute values.
is usually not great. The marginal case may be tested somewhat
by increasingB, by a factor of 2 or 3 to decrease the smeoth EXAMPLES AND USE OF DIAGNOSTICS
ing to see if this causes resolution of some features. If it does . o
andif R, (and, usuallyR,, andR,) is, by the criteria in Ref.  Sets of relaxation data have been solicited from a number
(1), very substantially decreased, then the resolution of tUrces, most of which will not be identified. All are from

features may be meaningful. Note that an increasg.rthat substantial sequences of samplgs for which most _rela_txati
permits an additional cycle of oscillation in a distributiorfnéasurements are good according to the above criteria. T

allows additional accommodation of the noigs. ( examples are shown to illustrate the use of the diagnos

: . . features discussed above.
Sharpness of detail and multimodalityA parameterF

indicating sharp detail is defined Distorted Relaxation Curve

Figure 2 shows several relaxation time distributions Tor
B 5 o’ 12 (CPMG) data for a sample of sandstone cleaned and satura
Fo= (2 (Ge1— 9072 90V ¥Aq, [17] " with brine. Data were taken at two even-echo spacifigs
Kt K=t about a factor of 3 apart. The data were windowed as descrik
above; the weighting-factor clipping described above was us
whereAy, is the spacing of the computed points in Nepers, aridr all, andS.. (point at infinite time) was a regression param
M is the number of computed points, the first and last pairs efer for all. The long-dashed curve is for the londeg, and
which are normally zero. In the limit of small,, FZ is the none of the diagnostic parameters suggest any problems w
ratio of integrals of the distribution slope squared and thibese data.
amplitude squared. For many sequences of data sets a generéhe remaining curves are for the shorfgg.. The solid
range ofF ¢, may be found. A sequence of samples may haweirve, which goes offscale, is with UPEN with the above
no very sharp peaks, often leadingRg, values of the order of parameters an@3,, = 1. The short-dashed curve is the distri

M-1 M-1
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confirmation of our diagnostic reasons not to trust the data f

200 the shortefT .

Marginal Resolution: One Peak or Two Peaks?

The lower part of Fig. 3 showd, (CPMG, windowed)
~ d distributions for a food product. It is very clear that the distri
: ]

bution of relaxation times does not consist of a single sha
line. However, a common question, important for physice
interpretation, is whether there are two populations of sign
sources that can be reliably separated on the basis of the se
relaxation data. We will here go to considerable length t
demonstrate a number of different diagnostic tests to deci
-120 0 100 whether the relaxation data alone can reliably separate t
Relaxation Time (ms) tentative two populations, and we have picked a case t

leaves the answer in doubt. In most cases the relaxation data

FIG. 2. Distributions of relaxation times for a porous sandstone sampi¢ot rule outtwo populations, but they may or may neiquire
saturated with brine. The long-dashed curve is for the longer of two even-eclwo populations.
spacings, and diagnostic parameters do not indicate data problems for th|s|_h lid fthe | t of Fig. 3 — 06
curve. The short-dashed curve is for the shorter echo spacing, with data € sold curves ot the lower part or Fig. _are for :
processed with normal parameters except that NN, the nonnegative constr&#% @nd the dashed curves for 1.0 ms. The light curves are w
is not imposed, resulting in three peaks and in large negative excursions. the weighting-factor clipping, and the heavy curves are witt
solid curve, also with three peaks, is with normal parameters, including N§yt. The 0.6-ms data have SNR580 and the 1.0-ms data 680.
The parameteR,, = 0.185 indicates that a good fit is not possible, &)d = t 150 ms we have/150/0.6= 15.8 and\/150/1.0= 12.25.

0.08 indicates excessive cost of NN. The dotted curve is with the over . .
compliance factoBy,, = 0.25 instead of the normal 1.0, using severe ever us, effective SNRs are about 9000 and 8000, respective

smoothing to get a unimodal curve and a very bad fit to the data. Comparison
with the curve for the good data with longer echo spacing shows that the
oversmoothed curve is not even qualitatively correct.
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bution without NN, the nonnegative constraint, giving a neg- E

ative area 53% of the total. With NN, the paramegy = 5
0.185, indicating a bad fit. Excessive sharp detail for this kind ;
of sample is indicated b, = 12.3. Excessive cost of NN is 4 [ttt e e =
indicated byR,,, = 0.08, indicating a problem distribution that < b o
is essentially the opposite of the possibility discussed above of L !

an unresolved marginally resolvable feature. The dotted curve
is with the overall compliancgy, = 0.25, where normal is 1.0.
This is equivalent to overestimating the noR&y a factor of

2. We now get a unimodal distribution witk, = 0.8, a huge

Signal / Neper

value which indicates data problems severe enough that it is 10 ' '
not clear what interpretation to make of this distribution. With -t l‘l i
guestionable data there is diagnostic value in plotting the errors L f !
of fit. With normal processing parameters, this distribution has 0 e — 4

eight consecutive windowed data points, representing about 10 100 1000

170 echoes, at times near 300 ms and with erot2 R,; near Time (ms)

180 ms there are six points, representing about 70 echoes, witFIG. 3. Distributions of relaxation times (lower) and errors of fit (upper)
errors ~—2R,. The relaxation curve does not represent " & food product. The solid curves are for an even-echo spaing: 0.6
lausible distribution of relaxation times. By comparin thims, with normal_parameters, giving _two peaks, and with a limit on weightin
p. o . T y P g ?‘actors at long times (see text), giving one peak. The dashed curves sho
distribution with the problem-free distribution for the longekimilar result forTe: = 1.0 ms. The text gives criteria for resolution of two
Tz, we can see that the distribution for the shorfge is peaks, showing just adequate signal-to-noise ratio to resolve the two pes
probably even qualitatively wrong. The long-dashed curve fajpvgever,Ti; can be “fOtef] thatdthe erfors\;gt' SSZW’; (iJ“ thf;unger part, afﬁ r
. . . . andom. The errors for three data sets, With = 0.6, 1.0, and 2.0 ms, are al
the IongerTEE IS,SUb,Stantla”y hlghel’ in the 50-100 ms rangérjlotted and are nearly the same, where they should be uncorrelated, and t
whereas any diffusion effect for the long&g: would only ;150 have large excursions at about 500 ms. We cannot safely say that there
reduce the amount of signal at the longest times. Thus, we have peaks; better data must be acquired for an answer.
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However, for reliable use of such high SNR it is necessary to 100 [ A AL
have correspondingly small systematic errors or data distor-
tions. To see whether this SNR is high enough to expect,
without systematic errors, to be able to reliably resolve the two
peaks, we use Egs. [11-12] from Ref),(which gives criteria &, [
for resolution of two equal sharp lines a factblapart:E, = Z ¢
y?/(6.87 + 15.9 + 7.2y%), y = (In Y)?/12, and SNR> [
VXq/EZ. However, the peaks in Fig. 3 have significant Widths§ [
especially the one at shorter times. The centers are separate@bym S
about 0.99 Np, and the mean halfwidth is about 0.22 Np. If we [
arbitrarily subtract the mean halfwidth from the separation in  » |
order to apply criteria for resolving two sharp lines, we get a
reduced separation 0.77 Np, giving a separation rdtie
e’’’ = 2.16. We getE, = 0.000318= 1/3142.Thus, an ¢
effective SNR of the order of 3000 is required for marginal Relaxation Time  (ms)

resolution, and several times that is required for firm resolu-

tion. This is just what we have for the data (8000 or 9000). FIG. 4. Absolute-value (magnitude) data, not identified, and processed

. . hased data. Absolute-value data taken with effective phase cycling, with d:
We note that the peaks in the lower part of Fig. 3 are n >t<tending to sufficiently long times, and processed v@thas a regression

resolved at eithel c value if the weighting-factor clipping is parameter, can be recognized by a posisvef the order ofR,\/ 772, where
used and that they are resolved if it is not used. However, tRgis the noise level. The lightweight curves are from processing as if the da

diagnostics are somewhat different for the two unresolvegre phased, and the heavy curves are from processing as absolute-value

distributions. Fof-- = 0.6 ms the maximum data time is 1200The solid curves are with normal parameters, and the dashed curves are v
T EE ) . . . . the limiting of weighting factors at long times.

ms, about four times the maximum relaxation time. WBeiis

used as a regression parameter and the weighting factors are

clipped at long times, there is the possibility that the regression . e

computation can adag. slightly to somewhat smooth the Might artificially sharpen or split distributions. Unfortunately,

distribution at shorter times. The data are taken with maﬁXF find a repeatable, nonrandom, error pattern for the data w

signals stacked and with phase cycling to nearly zero thé&F — O.Eri]and _1'?th and alsotw¢r;af%rtgerset Wit = 2.'0 i
baseline. For the run giving the light curve (with Weightingms’ as shown in the upper part ot #ig. 5. Jver some réegions

factor clipping),S. ~ —R,, or an order of magnitude Iargererrors are somewhat cyclic and almost identical for three de
) o0 Vi

than the effective noise even with the clipping. For the 0.6- %ts, where the errors should be unrelated._ Furthermore,
data withS,, as a regression parameter, it was possible to raid out 500 ms, there are groups of several points, repfese”t
By to very high values without resolving the two peaksmf"m_y echoes, at several times the rms error. We_ believe tl
However, withS, = 0, the two peaks are resolved witg, = t‘_nls is a case whgre _the UPEN processing of data in n_early re
1. The use ofS. as a regression parameter also buffers tfne might have indicated the need for instrument adjustme

transition from no NN constraint to use of the constraint. Th\@htIIe tfhetsamplfhm;ati stil aval(l\zble. W'th?uc: bettelr ?_ata, It
cost of NN, as given bR ., is small, becaus8, can adapt to not sate to say that there are two separated populations.

this change.

The situation is different for th& = 1.0 ms data. Here the
data extend to 2000 ms, which doesn't allow much adjustmentFigure 4 shows a set of, relaxation data apparently-re
of S, for smoothing a feature at shorter times or adapting to tlberded as absolute value amplitudes rather than as pha
transition from no NN to NN. Even with application of thesignals, without being so designated. When processed us
weighting-factor clipping an increase 8f, to 1.3 gives reso clipping of weighting factors, regression &, and assump
lution, unlike the case for th&g = 0.6 data where the datation of phased data approaching a baseline (hopefully zero,
extended only to 1200 ms. The paramd®yf, = 0.08, indi in any case with statistically stationary random noise), the th
cating excessive expense of NN, again unlike the case ftashed curve of Fig. 4 is obtained. The peak is unrealistical
Tee = 0.6 with weight-clipping. In many cases the excessivearrow, going far off scale in the figure. The thin solid line is
expense is because of systematic data errors or distortionshaf same without the clipping. The sharp peaks are not pls
the relaxation curves; however, here we must consider thible for the particular sample, but, apart from this, the diag
possibility that it might be because of unresolved, marginallyostic parameters indicate data problems. For these two curv
resolvable peaks. Removing the clipping gives resolution. R, = 0.17 and 0.09 an®,,, = 0.15 and 0.13, respectively.

The above considerations suggest a meaningful resolutidowever,S, ~ 100 for each, an®, ~ 80 for each. For these
into two peaks, but without “overkill.” However, the errors ofphase-cycled data we are warned by seeing$has about as
fit should be examined for clues to any data distortion thktrge as the noise. When the data are processed as sic
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absolute values, the square root of the sum of the squares of the 30 [ T T v v v ooy
in-phase and quadrature signals, we get the two heavy curves
which are nearly identical. The heavy dashed curve has weight- 23
ing-factor clipping, and the solid one does not. For the prox [
cessing with the absolute-value assumptan~ —.03,R,,, ~
0.01, andS, = —0.1 X R,, all indicating a good solution to
good data assumed to represent absolute values.

Signal / Nepe

Peak Sharpening and Splitting by Baseline Problems

Figure 5 shows the consequences of using a wrong value of
baseline signal. This can be the result of instrumental drift or other
problems, but here artificial data are generated from known mod- 0.1 1 10 100 1000 10000
els and data processed with several values of the baseline signal Relaxation Time (ms)

S.. In Fig. 5 the dashed curves show the models, which are o )
rectangular distributions of relaxation times; in the upper examqlé; 'ﬁé;‘/ Distributions for a fractured carbonate rock saturated with watel

. . . . ) y solid curve is for the UPEN solution with normal parameters. Tt
the width is a factor of 2, and in the lower the width is a factor Qfi;gnostics do not suggest any data problems. The heavy dashed curve is
5. Random noise of unit rms value has been added, and the iniig}ature smoothing and a fixed smoothing coefficient giving 0.16% high
signal is 200 in both examples. After the data were generated, they error of fit. Very similar curves (not shown) were obtained by use c
were windowed as described above, using 5% relative wind&{oular value decomposition instead of a penalty function or by using slope

widths. The data extend to 1000 ms, which is only a factor of 22§Plitude smoothing to give the same error of fit as by UPEN. The light soll
curve is for curvature smoothing with 10 times stronger fixed coefficient an

or2.0 beyqnd the longest relaxatlo_n t'mes- gives 27% higher error. The light dashed curve is with a further factor of 2
The unimodal curves approximating the dashed modet a fixed smoothing coefficient and gives 2.5 times the rms error fit of th

curves are processed with UPEN wih = 0. The off-scale UPEN solution.

sharp peak in the upper figure and the bimodal curve in tt
lower figure are processed with. = 1.5, namely 1.5 times
the noise. This small positive value &, has the effect of
bending the logarithmic decay curves downward, tending
artificially sharpen or split peaks on relaxation time distribu
tions. The effects of slightly negativi& values (not shown) are
much less pronounced. In fact, regressiorsoigives values of
the order of—0.5, with distributions not much different from
those shown folS, = 0. Going toS, = —2.0 (not shown)
produces significant tails toward long relaxation times.

2000

1500

1000

500

Signal / Neper

400

Peak with Tail

300 Figure 6 showsT, distributions for a sample of fractured
carbonate rock saturated with water. In this example the dia
nostics discussed above do not indicate problems with the de
The heavy solid curve shows the UPEN solution with th

normal parameters. The heavy dashed curve is with a fix

200

100

o = a— —— smoothing coefficient, giving an rms error of fit 0.16% highe
100 1000 than for the UPEN solution (not significantly different). The
RelaxationTime  (ms) peak is significantly wider, but the feature most easily misir

FIG. 5. Artificial T, data for rectangular distributions of relaxation times,terpreted is that the distribution appears to be broken into thr

with models shown as dashed curves. Width of the upper distribution is a facPulations. The tail of the distribution is fit too well in the
of 2, and width of the lower is a factor of 5. Both have random noise with ungense that the oscillations allow additional fitting to the nois
rms value and zero mean, and both have an initial signal of 200. Normehe peak is not quite adequately fit, because it is ove
processing withS. = 0 gives the solid curves approximating the modelsgioothed, while the tail is undersmoothed. Very similar curve

Processing witls, as a regression variable (not shown) gives nearly the SaTﬁOt ShOWh) were obtained usina amplitude smoothing or slo
curves. The effect of baseline errors is shown by seting= 1.5 (1.5 times 9 p 9 l

the individual-echo rms noise), giving the sharp peak in the upper figure a8EN00thing with coefficients chosen to give the same error of
the two peaks in the lower figure. as for the UPEN solution. Likewise, a similar solution wa:
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obtained by using singular value decompositi6pifistead of
a penalty function.

The thin solid curve of Fig. 6 is with the fixed smoothing
coefficient increased a factor of 10, increasing the rms error of
fit 27% and still leaving three peaks. Note further that thie
smaller peaks are not at the same times on the inversions with
the different smoothing coefficients; in fact, the peak at short-
est time extends to times significantly shorter than for the
UPEN solution or that with the lesser fixed smoothing. Further
increasing the smoothing coefficient a factor of 20 gives the
light dashed curve, which has rms error of fit a factor of 2.5
worse than for the UPEN fit, and which still has a pronouncegi,
minimum.

B,
DISCUSSION AND CONCLUSIONS
Ei

The UPEN method of inversion does not require specific
input of data point spacing, whether equally spaced in timeE,,
log-time, or with other spacing schemes. However, if points
have different statistical weight, the weighting factors must e,
used in the linear inversion done in each iteratiod.,Iflata are
taken with large numbers of echoes, the data can be averaged
in windows as described above to give manageable numbers of
data points for computation without losing significant informalN,
tion. Normally, there is no user adjustment of smoothing pa-
rameters, although the program computes the noise level and
uses the square of this as a factor in computing a smoothiNgl
penalty.

A basic feature of UPEN is that it provides much strongd®
smoothing of broad slowly varying regions than it does for
sharp peaks. This allows presentation of sharp peaks without
unnecessarily appearing to “resolve” peaks in a broad teR,
Since it is not necessary to oversmooth a sharp peak to giRa
reasonable overall distribution, there is the possibility of get-
ting spurious sharp detail as a result of systematic data errors,
particularly those that correspond to a slight downward bend-
ing of the logarithmic decay curve. Numerous diagnostic fe&,
tures are presented to try to identify data sets subject to these
systematic errors. These features suggest the usefulnes® pf
running UPEN in nearly real time when taking important data,
permitting attempts at improving the data while the sample i&,,
still available.

Examples of the use of diagnostic features are given, includ-
ing a discussion of a case where it is important to kno®,,
whether the relaxation dataquire a pair of resolved peaks or
leave open the question of whether there is a single peak or t&o
peaks.

UPEN now applies an amplitude penalty with amplituds
feedback for regions of a distribution of relaxation times out-
side the range of the data. UPEN now goes through three
cycles of computation to provide diagnostic information and t8NR
permit certain automatic changes in the computation, basedton
diagnostic parameters. T

BORGIA, BROWN, AND FANTAZZINI

APPENDIX
List of Symbols

Noise fumore, Rausche@nby itself or with one index
R indicates a noise value; with two indic&sindi-
cates the log-ratio of noise values; with one inde:
plus “no” (“new/old”) it refers to the log-ratio of the
particular category of noise after and before applice
tion of NN. Symbols defined and used only locally
may not be on this list.

Overall multiplier for the smoothing compliances (inverse
smoothing coefficient). See Feedback for the opigr
Window width relative to central time. See Egs. [1-2]
Weighting factors for windowed data (or for differences

in rms noise for any reason).

Individual error of fit (usually displayed &8,VB; to
give uniform amplitudes for random noise).

A parameter related to the form of the distribution, witf
large values indicating considerable sharp detail.
A parameter related to the form of the distribution, witf

values>1 indicating multimodality.

The kth computed amplitude on relaxation time distri-
bution.

Number of points used in connection with early signa
alternation. See Egs. [15-16] and Signal Alternatio
and Data Midpoints.

The nonnegative constraint on the computed distribt
tion.

Ensemble-average rms noise for a single channel (i
phase or quadrature) for individual data points (be
fore windowing, if any).

rms error of fit to the data. See Eq. [13].

Noise computed from variation of errors of second
nearest neighbor®, is intended to reduce the effect
of systematic data errors of the estimates of the nois
See Eq. [14].

“Effective noise”= R/\/data points per Neper in time
as discussed under Effective Noise.

=In(R/R,). Substantial positive values suggest signif
icant systematic errors.

=In[R,(new)R,(old)], where “new” is after and “old”
before application of NN. Substantial positive value:
suggest significant systematic errors.

Large R;, suggests alternating errors of early points
See below Egs. [15-16].

The asymptotic signal at infinite time, whether com
puted as a regression parameter or imposed.

The ith data point of a (possibly windowed) set of
points used in the computation. See windowing dis
cussion.

Signal-to-noise ratio.

(Lower case, perhaps with subscript) data time.

(Upper case, perhaps with subscript) relaxation time.
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